Advertisement

Advances in Atmospheric Sciences

, Volume 36, Issue 2, pp 219–230 | Cite as

Geostrophic Spirals Generated by the Horizontal Diffusion of Vortex Stretching in the Yellow Sea

  • Xiangzhou SongEmail author
  • Rui Xin Huang
  • Dexing Wu
  • Fangli Qiao
  • Guansuo Wang
Original Paper
  • 29 Downloads

Abstract

Horizontal velocity spirals with a clockwise rotation (downward looking) rate of 1.7° m−1, on average, were observed in the western and northern Yellow Sea from December 2006 to February 2007. With the observed thermal wind relation, the beta-spiral theory was used to explain the dynamics of spirals. It was found that the horizontal diffusion of geostrophic vortex stretching is likely to be a major mechanism for generating geostrophic spirals. Vertical advection associated with surface/bottom Ekman pumping and topography-induced upwelling is too weak to support these spirals. Strong wind stirring and large heat loss in wintertime lead to weak stratification and diminish the effects of vertical advection. The cooling effect and vertical diffusion are offset by an overwhelming contribution of horizontal diffusion in connection with vortex stretching. The Richardson number-dependent vertical eddy diffusivity reaches a magnitude of 10−4 m2 s−1 on average. An eddy diffusivity of 2870 m2 s−1 is required for dynamic balance by estimating the residual term. This obtained value of 10−4 m2 s−1 is in good agreement with the estimation in terms of observed eddy activities. The suppressed and unsuppressed diffusivities in the observation region are 2752 and 2881 m2 s−1, respectively, which supports a closed budget for velocity rotation.

Key words

geostrophic spirals horizontal diffusion vortex stretching and surface cooling effect 

摘 要

基于2006年底至2007年初在西, 北黄海的水文观测, 发现海洋的地转流速存在明显的顺时针螺旋形态, 量值为1.7° m−1. 在本文中, 热成风关系和Beta螺旋理论用来研究该螺旋产生的机制问题, 研究发现, 涡拉伸水平耗散是可能导致该地转螺旋的主要诱因. 由于冬季层化很弱, 表层和底层的Ekman泵压辅之以地形导致的上升流速, 无法支撑地转流速的螺旋. 表面的冬季冷却效应和垂向混合被涡拉伸水平耗散所抵消而产生顺时针螺旋. 基于理查德森数估算的垂向混合率平均为10−4 m2 s−1. 为了维持螺旋系统, 需要水平涡耗散率2870 m2 s−1来平衡收支, 该量值与Klocker 和 Abernathey (2014)利用海表面高度计估算的量值极为相近, 支持了螺旋的平衡机制研究.

关键词

地转螺旋 涡拉伸 水平耗散 冷却效应 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors made equal contributions to this paper. D. WU and F. QIAO chaired the observations in the Yellow Sea and revised the draft. R. X. HUANG and X. SONG analyzed the data and wrote the paper. Mr. Guansuo WANG ran the realistic GCMs and set the sensitivity experiments for the analysis of dynamics. The crews of Science 1 and Dong Fang Hong 2 are acknowledged for their cruises. Special thanks to Dr. Andreas KLOCKER for his generous share of their mesoscale eddy diffusivity estimates, which provided solid support for the rotation budget. Finally, we appreciate that Drs. Shanhong GAO and Yue WANG provided their high-resolution model results of the Yellow Sea. This research is funded by the National Natural Science Foundation of China (Grant Nos. 41306003 and 41430963), the Fundamental Research Funds for Central Universities (Grant Nos. 0905–841313038, 1100–841262028 and 0905–201462003), the China Postdoctoral Science Foundation (Grant No. 2013M531647), and the Natural Science Foundation of Shandong (Grant No. BS2013HZ015). Other projects, including OAFlux+ISCCP, CFSR, MERRA, ERA-Interim, CORE.2, QuikSCAT and AVISO, are also acknowledged for the dynamic calculations in this paper. We appreciate the constructive comments and suggestions from the two anonymous reviewers, which helped improve the quality of the paper.

References

  1. Beheinfer, D. W., 1979: On computing the absolute geostrophic velocity spiral. J. Mar. Res., 37, 459–470.Google Scholar
  2. Behringer, D. W., and H. Stommel, 1980: The beta spiral in the North Atlantic subtropical gyre. Deep Sea Research Part A. Oceanographic Research Papers, 27(3–4), 225–238, https://doi.org/10.1016/0198-0149(80)90014-X.CrossRefGoogle Scholar
  3. Bigg, G. R., 1985: The beta spiral method. Deep Sea Research Part A. Oceanographic Research Papers, 32(4), 465–484, https://doi.org/10.1016/0198-0149(85)90092-5.CrossRefGoogle Scholar
  4. Bosilovich, M. G., 2008: NASA’s modern era retrospectiveanalysis for research and applications: Integrating Earth observations. IEEE Earthzine, 1(1–4), 82367.Google Scholar
  5. Cui, M. C., Y. X. Li, and D. X. Hu, 1991: Two beta spirals in the western boundary region of the Pacific. Chinese Journal of Oceanology and Limnology, 9(4), 358–363, https://doi.org/10.1007/BF02850651.CrossRefGoogle Scholar
  6. Cushman-Roisin, B., and V. Malaˇciˇc, 1997: Bottom Ekman pumping with stress-dependent eddy viscosity. J. Phys. Oceanogr., 27(9), 1967–1975, https://doi.org/10.1175/1520-0485(1997) 027<1967:BEPWSD>2.0.CO;2.CrossRefGoogle Scholar
  7. Davis, R. E., 1978: On estimating velocity from hydrographic data. J. Geophys. Res., 83(C11), 5507–5509, https://doi.org/10.1029/JC083iC11p05507.Google Scholar
  8. de Boyer Montégut, C., G. Madec, A. S. Fischer, A. S. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109(C12), C12003, https://doi.org/10.1029/2004JC002378.Google Scholar
  9. Dee, D. P., and S. Uppala, 2009: Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 135(644), 1830–1841. https://doi.org/10.1002/qj.493.CrossRefGoogle Scholar
  10. Ekman, V. M., 1905: On the influence of the earth’s rotation on ocean currents. Ark. Mat. Astron. Fys., 2, 1–53.Google Scholar
  11. Huang, R. X., 2010: Ocean circulation: Wind-Driven and Thermohaline Processes. Cambridge University Press, 791 pp.Google Scholar
  12. Klocker, A., and R. Abernathey, 2014: Global patterns of mesoscale eddy properties and diffusivities. J. Phys. Oceanogr., 44(3), 1030–1046, https://doi.org/10.1175/JPOD-13-0159.1.CrossRefGoogle Scholar
  13. Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air-sea flux data set. Climate Dyn., 33(2–3), 341–364, https://doi.org/10.1007/s00382-008-0441-3.CrossRefGoogle Scholar
  14. Lin, X. P., J. Y. Yang, J. S. Guo, Z. X. Zhang, Y. Q. Yin, X. Z. Song and X. H. Zhang, 2011: An asymmetric upwind flow, Yellow Sea Warm Current: 1. New observations in the western Yellow Sea. J. Geophys. Res., 116(C4), C04026, https://doi.org/10.1029/2010JC006513.Google Scholar
  15. Liu, W. T., 2002: Progress in scatterometer application. Journal of Oceanography, 58(1), 121–136, https://doi.org/10.1023/A:1015832919110.CrossRefGoogle Scholar
  16. Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep Sea Research Part I: Oceanographic Research Papers, 45(12), 1977–2010, https://doi.org/10.1016/S0967-0637(98)00070-3.CrossRefGoogle Scholar
  17. Neumann, G., and W. J. Pierson, 1966: Principles of Physical Oceanography. Prentice-Hall, Inc., Englewood Cliffs, 545 pp.Google Scholar
  18. Pacanowski, R. C., and S. G. H. Philander, 1981: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11(11), 1443–1451. https://doi.org/10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2.Google Scholar
  19. Pedlosky, J., 1979: Geophysical Fluid Dynamics. Springer, New York, 624 pp.Google Scholar
  20. Price, J. F, Weller, R. A. and R. R. Schudlich, 1987: Wind-driven ocean currents and Ekman transport. Scienc, 238(4833), 1534–1538, https://doi.org/10.1126/science.238.4833.1534.CrossRefGoogle Scholar
  21. Price, J. F, and M. A. Sundermeyer, 1999: Stratified Ekman layers. J. Geophys. Res., 104(C9), 20 467–20 494, https://doi.org/10.1029/1999JC900164.Google Scholar
  22. Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Climate, 24(14), 3624–3648, https://doi.org/10.1175/JCLI-D-11-00015.1.CrossRefGoogle Scholar
  23. Saha, S., and Coauthors, 2010: The NCEP climate forecast system reanalysis. Bull. Am. Meteor. Soc., 91(8), 1015–1057, https://doi.org/10.1175/2010BAMS3001.1.CrossRefGoogle Scholar
  24. Schott, F., and H. Stommel, 1978: Beta spirals and absolute velocities in different oceans. Deep-Sea Res., 25(11), 961–1010, https://doi.org/10.1016/0146-6291(78)90583-0.CrossRefGoogle Scholar
  25. Schott, F., and R. Zantopp, 1979: Calculation of absolute velocities from different parameters in the western North Atlantic. J. Geophys. Res., 84(C11), 6990–6994, https://doi.org/10.1029/JC084iC11p06990.Google Scholar
  26. Schott, F., and R. Zantopp, 1980: On the effect of vertical mixing on the determination of absolute currents by the beta spiral method. Deep Sea Research Part A. Oceanographic Research Papers, 27(2), 173–180, https://doi.org/10.1016/0198-0149(80)90095-3.CrossRefGoogle Scholar
  27. Song, X. Z., and L. S. Yu., 2013: How much net surface heat flux should go into the Western Pacific Warm Pool? J. Geophys. Res., 118(7), 3569–3585, https://doi.org/10.1002/jgrc.20246.CrossRefGoogle Scholar
  28. Spall, M. A., 1992: Cooling spirals and recirculation in the subtropical gyre. J. Phys. Oceanogr., 22(5), 564. https://doi.org/10.1175/1520-0485(1992)022<0564:CSARIT>2.0.CO;2.CrossRefGoogle Scholar
  29. Stommel, H., and F. Schott, 1977: The beta spiral and the determination of the absolute velocity field from hydrographic station data. Deep-Sea Res., 24(3), 325–329. https://doi.org/10.1016/0146-6291(77)93000-4.CrossRefGoogle Scholar
  30. Walters, R. A., and C. Heston, 1982: Removing tidal-period variations from time-series data using low-pass digital filters. J. Phys. Oceanogr., 12, 112–115. https://doi.org/10.1175/1520-0485(1982)012<0112:RTPVFT>2.0.CO;2.CrossRefGoogle Scholar
  31. Wu, D., S. Gao, Y. Wang and X. Chen, 2011: Atlas of the Monthly Wind Fields and Temperature in Bohai Sea and Yellow Sea, 1960–2007. Ocean University of China Press, 150 pp.Google Scholar
  32. Wunsch, C., 1978: The North Atlantic general circulation west of 50◦W determined by inverse methods. Rev. Geophys., 16, 583–620. https://doi.org/10.1029/RG016i004p00583.CrossRefGoogle Scholar
  33. Yang, D. Z., and Coauthors, 2018: Topographic beta spiral and onshore intrusion of the Kuroshio Current. Geophys. Res. Lett., 45, 287–296, https://doi.org/10.1002/2017GL076614.CrossRefGoogle Scholar
  34. Yu, F., Z. X. Zhang, X. Y. Diao, and J. S. Guo, 2010: Observational evidence of the Yellow Sea warm current. Chinese Journal of Oceanology and Limnology, 28, 677–683. https://doi.org/10.1007/s00343-010-0006-2.CrossRefGoogle Scholar
  35. Yu, L. S., and R. A. Weller, 2007: Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Am. Meteor. Soc., 88, 527–529. https://doi.org/10.1175/BAMS-88-4-527.CrossRefGoogle Scholar
  36. Zhang, Y. C., W. B. Rossow, A. A. Lacis, V. Oinas and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109: D19105, https://doi.org/10.1029/2003JD004457.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiangzhou Song
    • 1
    Email author
  • Rui Xin Huang
    • 2
  • Dexing Wu
    • 1
  • Fangli Qiao
    • 3
  • Guansuo Wang
    • 3
  1. 1.Physical Oceanography LaboratoryOcean University of ChinaQingdaoChina
  2. 2.Department of Physical OceanographyWoods Hole Oceanographic InstitutionWoods HoleUSA
  3. 3.First Institute of OceanographyState Oceanic AdministrationQingdaoChina

Personalised recommendations