Advertisement

Advances in Atmospheric Sciences

, Volume 36, Issue 2, pp 160–172 | Cite as

Impact of the Assimilation Frequency of Radar Data with the ARPS 3DVar and Cloud Analysis System on Forecasts of a Squall Line in Southern China

  • Yujie PanEmail author
  • Mingjun Wang
Original Paper
  • 47 Downloads

Abstract

Assimilation configurations have significant impacts on analysis results and subsequent forecasts. A squall line system that occurred on 23 April 2007 over southern China was used to investigate the impacts of the data assimilation frequency of radar data on analyses and forecasts. A three-dimensional variational system was used to assimilate radial velocity data, and a cloud analysis system was used for reflectivity assimilation with a 2-h assimilation window covering the initial stage of the squall line. Two operators of radar reflectivity for cloud analyses corresponding to single- and double-moment schemes were used. In this study, we examined the sensitivity of assimilation frequency using 10-, 20-, 30-, and 60-min assimilation intervals. The results showed that analysis fields were not consistent with model dynamics and microphysics in general; thus, model states, including dynamic and microphysical variables, required approximately 20 min to reach a new balance after data assimilation in all experiments. Moreover, a 20-min data assimilation interval generally produced better forecasts for both single- and double-moment schemes in terms of equitable threat and bias scores. We conclude that a higher data assimilation frequency can produce a more intense cold pool and rear inflow jets but does not necessarily lead to a better forecast.

Key words

cloud analysis radar data assimilation data assimilation interval 

摘 要

本文基于一次2007年04月23日发生于中国南部的飑线系统对雷达资料同化频率对同化和预报的影响进行了研究. 同化窗为飑线系统初生时2h, 其中雷达径向风通过三维变分, 反射率通过云分析同化, 云分析中分别使用单参数和双参数方案. 分别对10-, 20-, 30-和60-min同化间隔进行了敏感性试验. 结果显示, 分析场不满足预报模式动力平衡; 因此预报时动力和微物理变量, 同化后需要约20min重新建立动力平衡. 并且客观评分显示, 当使用20-min的同化间隔时, 无论单参数和双参数方案的预报能够更为准确地预报降水. 而更高频的雷达资料同化, 则会造成飑线系统中冷池, 后向气流过强, 从而降低预报质量.

关键词

云分析 雷达资料同化 资料同化间隔 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was primarily supported by the National Key R&D Program of China (Grant No. 2017YFC1502104), the National Natural Science Foundation of China (Grant Nos. 41775099 and 41605026), Grant No. NJCAR2016ZD02, and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

References

  1. Albers, S. C., J. A. McGinley, D. L. Birkenheuer, and J. R. Smart, 1996: The Local Analysis and Prediction System (LAPS): Analyses of clouds, precipitation, and temperature. Wea. Forecasting, 11, 273–287, https://doi.org/10.1175/1520-0434 (1996)011<0273:tlaaps>2.0.co;2.CrossRefGoogle Scholar
  2. Atkins, N. T., J. M. Arnott, R. W. Przybylinski, R. A. Wolf, and B. D. Ketcham, 2004: Vortex structure and evolution within bow echoes. Part I: Single-doppler and damage analysis of the 29 June 1998 Derecho. Mon. Wea. Rev., 132, 2224–2242, https://doi.org/10.1175/1520-0493(2004)132<2224:vsaewb>2.0.co; 2.Google Scholar
  3. Biggerstaff, M. I., and R. A. Houze, 1993: Kinematics and microphysics of the transition zone of the10–11 June 1985 squall line. J. Atmos. Sci., 50, 3091–3110, https://doi.org/10.1175/1520-0469(1993)050<3091:kamott>2.0.co;2.CrossRefGoogle Scholar
  4. Carlin, J. T., J. D. Gao, J. C. Snyder, and A. V. Ryzhkov, 2017: Assimilation of ZDR columns for improving the spinup and forecast of convective storms in storm-scale models: Proofof-concept experiments. Mon. Wea. Rev., 145, 5033–5057, https://doi.org/10.1175/mwr-d-17-0103.1.CrossRefGoogle Scholar
  5. Chang, S.-F., Y.-C. Liou, J. Z. Sun, and S.-L. Tai, 2016: The implementation of the ice-phase microphysical process into a four-dimensional variational Doppler radar analysis system (VDRAS) and its impact on parameter retrieval and quantitative precipitation nowcasting. J. Atmos. Sci., 73, 1015–1038, https://doi.org/10.1175/jas-d-15-0184.1.CrossRefGoogle Scholar
  6. Chang, W.-Y., T.-C. C. Wang, and P.-L. Lin, 2009: Characteristics of the raindrop size distribution and drop shape relation in typhoon systems in the Western Pacific from the 2D video disdrometer and NCU C-band polarimetric radar. J. Atmos. Oceanic Technol., 26, 1973–1993, https://doi.org/10.1175/2009jtecha1236.1.CrossRefGoogle Scholar
  7. Chang, W.-Y., W.-C. Lee, and Y.-C. Liou, 2015: The kinematic and microphysical characteristics and associated precipitation efficiency of subtropical convection during SoWMEX/TiMREX. Mon. Wea. Rev., 143, 317–340, https://doi.org/10.1175/mwr-d-14-00081.1.CrossRefGoogle Scholar
  8. Chen, M., and X.-Y. Huang, 2006: Digital filter initialization for MM5. Mon. Wea. Rev., 134, 1222–1236. https://doi.org/10.1175/mwr3117.1.CrossRefGoogle Scholar
  9. Dong, J. L., and M. Xue, 2013: Assimilation of radial velocity and reflectivity data from coastal WSR-88D radars using an ensemble Kalman filter for the analysis and forecast of landfalling hurricane Ike (2008). Quart. J. Roy. Meteor. Soc., 139, 467–487, https://doi.org/10.1002/qj.1970.CrossRefGoogle Scholar
  10. Dong, J. L., M. Xue, and K. Droegemeier, 2011: The analysis and impact of simulated high-resolution surface observations in addition to radar data for convective storms with an ensemble Kalman filter. Meteor. Atmos. Phys., 112, 41–61, https://doi.org/10.1007/s00703-011-0130-3.CrossRefGoogle Scholar
  11. Fovell, R., D. Durran, and J. R. Holton, 1992: Numerical simulations of convectively generated stratospheric gravity waves. J. Atmos. Sci., 49, 1427–1442. https://doi.org/10.1175/1520-0469(1992)049<1427:nsocgs>2.0.co;2.CrossRefGoogle Scholar
  12. Gao, J. D., M. Xue, A. Shapiro, and K. K. Droegemeier, 1999: A variational method for the analysis of three-dimensional wind fields from Two Doppler radars. Mon. Wea. Rev., 127, 2128–2142, https://doi.org/10.1175/1520-0493(1999) 127<2128:avmfta>2.0.co;2.CrossRefGoogle Scholar
  13. Gao, J. D., M. Xue, K. Brewster, and K. K. Droegemeier, 2004: A three-dimensional variational data analysis method with recursive filter for Doppler radars. J. Atmos. Oceanic Technol., 21, 457–469, https://doi.org/10.1175/1520-0426(2004)021 <0457:atvdam>2.0.co;2.CrossRefGoogle Scholar
  14. Gao, J. D., C. H. Fu, D. J. Stensrud, and J. S. Kain, 2016: OSSEs for an ensemble 3DVAR data assimilation system with radar observations of convective storms. J. Atmos. Sci., 73, 2403–2426, https://doi.org/10.1175/jas-d-15-0311.1.CrossRefGoogle Scholar
  15. Ge, G. Q., J. D. Gao, and M. Xue, 2012: Diagnostic pressure equation as a weak constraint in a storm-scale three-dimensional variational radar data assimilation system. J. Atmos. Oceanic Technol., 29, 1075–1092, https://doi.org/10.1175/jtech-d-11-00201.1.CrossRefGoogle Scholar
  16. Grim, J. A., R. M. Rauber, G. M. McFarquhar, B. F. Jewett, and D. P. Jorgensen, 2009: Development and forcing of the rear inflow jet in a rapidly developing and decaying squall line during BAMEX. Mon. Wea. Rev., 137, 1206–1229, https://doi.org/10.1175/2008mwr2503.1.CrossRefGoogle Scholar
  17. Hu, M., and M. Xue, 2007: Impact of configurations of rapid intermittent assimilation of WSR-88D radar data for the 8 May 2003 Oklahoma City tornadic thunderstorm case. Mon. Wea. Rev., 135, 507–525, https://doi.org/10.1175/mwr3313.1.CrossRefGoogle Scholar
  18. Hu, M., M. Xue, and K. Brewster, 2006a: 3DVAR and cloud analysis with WSR-88D Level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Wea. Rev., 134, 675–698, https://doi.org/10.1175/mwr3092.1.Google Scholar
  19. Hu, M., M. Xue, J. D. Gao, and K. Brewster, 2006b: 3DVAR and cloud analysis with WSR-88D Level-II data for the prediction of the Fort Worth, Texas, Tornadic Thunderstorms. Part II: Impact of radial velocity analysis via 3DVAR. Mon. Wea. Rev., 134, 699–721, https://doi.org/10.1175/mwr3093.1.Google Scholar
  20. Johnson, A., and X. G. Wang, 2017: Design and implementation of a GSI-based convection-allowing ensemble data assimilation and forecast system for the PECAN field experiment. Part I: Optimal configurations for nocturnal convection prediction using retrospective cases. Wea. Forecasting, 32, 289–315. https://doi.org/10.1175/waf-d-16-0102.1.Google Scholar
  21. Jung, Y., G. F. Zhang, and M. Xue, 2008a: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman Filter. Part I: Observation operators for reflectivity and polarimetric variables. Mon. Wea. Rev., 136, 2228–2245. https://doi.org/10.1175/2007mwr2083.1.Google Scholar
  22. Jung, Y., M. Xue, G. F. Zhang, and J. M. Straka, 2008b: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part II: Impact of polarimetric data on storm analysis. Mon. Wea. Rev., 136, 2246–2260. https://doi.org/10.1175/2007mwr2288.1.Google Scholar
  23. Jung, Y., M. Xue, and M. J. Tong, 2012: Ensemble Kalman filter analyses of the 29–30 May 2004 Oklahoma tornadic thunderstorm using one-and two-moment bulk microphysics schemes, with verification against polarimetric radar data. Mon. Wea. Rev., 140, 1457–1475. https://doi.org/10.1175/mwr-d-11-00032.1.CrossRefGoogle Scholar
  24. Kessler, E., 1995: On the continuity and distribution of water substance in atmospheric circulations. Atmos. Res., 38, 109–145, https://doi.org/10.1016/0169-8095(94)00090-z.CrossRefGoogle Scholar
  25. Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092, https://doi.org/10.1175/1520-0450 (1983)022<1065:bpotsf>2.0.co;2.CrossRefGoogle Scholar
  26. Lynch, P., and X.-Y. Huang, 1992: Initialization of the HIRLAM model using a digital filter. Mon. Wea. Rev., 120, 1019–1034, https://doi.org/10.1175/1520-0493(1992)120<1019:iothmu> 2.0.co;2.CrossRefGoogle Scholar
  27. Meng, Z. Y., F. Q. Zhang, P. Markowski, D. C. Wu, and K. Zhao, 2012: A modeling study on the development of a bowing structure and associated rear inflow within a squall line over South China. J. Atmos. Sci., 69, 1182–1207, https://doi.org/10.1175/jas-d-11-0121.1.CrossRefGoogle Scholar
  28. Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 3051–3064, https://doi.org/10.1175/jas3534.1.Google Scholar
  29. Pan, Y. J., M. Xue, and G. Q. Ge, 2016: Incorporating diagnosed intercept parameters and the graupel category within the ARPS cloud analysis system for the initialization of double-moment microphysics: Testing with a squall line over South China. Mon. Wea. Rev., 144, 371–392, https://doi.org/10.1175/mwr-d-15-0008.1.CrossRefGoogle Scholar
  30. Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed., Pergamon Press., 293 pp.Google Scholar
  31. Schenkman, A. D., M. Xue, A. Shapiro, K. Brewster, and J. D. Gao, 2011a: The analysis and prediction of the 8–9 May 2007 Oklahoma Tornadic mesoscale convective system by assimilating WSR-88D and CASA radar data using 3DVAR. Mon. Wea. Rev., 139, 224–246, https://doi.org/10.1175/2010 mwr3336.1.CrossRefGoogle Scholar
  32. Schenkman, A. D., M. Xue, A. Shapiro, K. Brewster, and J. D. Gao, 2011b: Impact of CASA radar and Oklahoma mesonet data assimilation on the analysis and prediction of tornadic mesovortices in an MCS. Mon. Wea. Rev., 139, 3422–3445, https://doi.org/10.1175/mwr-d-10-05051.1.CrossRefGoogle Scholar
  33. Smith, Jr. P. L., C. G. Myers, and H. D. Orville, 1975: Radar reflectivity factor calculations in numerical cloud models using bulk parameterization of precipitation. J. Appl. Meteor., 14, 1156–1165, https://doi.org/10.1175/1520-0450 (1975)014<1156:rrfcin>2.0.co;2.CrossRefGoogle Scholar
  34. Snook, N., M. Xue, and Y. Jung, 2015: Multiscale EnKF assimilation of radar and conventional observations and ensemble forecasting for a tornadic mesoscale convective system. Mon. Wea. Rev., 143, 1035–1057, https://doi.org/10.1175/mwr-d-13-00262.1.CrossRefGoogle Scholar
  35. Snyder, C., and F. Q. Zhang, 2003: Assimilation of simulated doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 1663–1677, https://doi.org/10.1175/2555.1.CrossRefGoogle Scholar
  36. Sun, J. Z., and N. A. Crook, 1997: Dynamical and microphysical retrieval from doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 1642–1661, https://doi.org/10.1175/1520-0469(1997)054<1642:damrfd>2.0.co;2.Google Scholar
  37. Sun, J. Z., and N. A. Crook, 2001: Real-time low-level wind and temperature analysis using single WSR-88D data. Wea. Forecasting, 16, 117–132, https://doi.org/10.1175/1520-0434 (2001)016<0117:rtllwa>2.0.co;2.CrossRefGoogle Scholar
  38. Sun, J. Z., and J. W. Wilson, 2003: The assimilation of radar data for weather prediction. Meteor. Monogr., 30, 175–198, https://doi.org/10.1175/0065-9401(2003)030<0175:taordf>2. 0.co;2.CrossRefGoogle Scholar
  39. Tong, M. J., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 1789–1807, https://doi.org/10.1175/mwr2898.1.CrossRefGoogle Scholar
  40. Trapp, R. J., and M. L. Weisman, 2003: Low-level mesovortices within squall lines and bow echoes. Part II: Their genesis and implications. Mon. Wea. Rev., 131, 2804–2823, https://doi. org/10.1175/1520-0493(2003)131<2804:lmwsla>2.0.co;2.Google Scholar
  41. Wainwright, C. E., D. T. Dawson II, M. Xue, and G. F. Zhang, 2014: Diagnosing the intercept parameters of the exponential drop size distributions in a single-moment microphysics scheme and impact on supercell storm simulations. Journal of Applied Meteorology and Climatology, 53, 2072–2090, https://doi.org/10.1175/jamc-d-13-0251.1.CrossRefGoogle Scholar
  42. Wakimoto, R. M., P. Stauffer, and W.-C. Lee, 2015: The vertical vorticity structure within a squall line observed during BAMEX: Banded vorticity features and the evolution of a bowing segment. Mon. Wea. Rev., 143, 341–362, https://doi.org/10.1175/mwr-d-14-00246.1.CrossRefGoogle Scholar
  43. Wu, B., J. Verlinde, and J. Z. Sun, 2000: Dynamical and microphysical retrievals from doppler radar observations of a deep convective cloud. J. Atmos. Sci., 57, 262–283, https://doi.org/10.1175/1520-0469(2000)057<0262:damrfd>2.0.co;2.CrossRefGoogle Scholar
  44. Xue, M., M. J. Tong, and K. K. Droegemeier, 2006: An OSSE framework based on the ensemble square root Kalman filter for evaluating the impact of data from radar networks on thunderstorm analysis and forecasting. J. Atmos. Oceanic Technol., 23, 46–66, https://doi.org/10.1175/jtech1835.1.CrossRefGoogle Scholar
  45. Yang, M.-H., and R. A. Houze Jr., 1995: Sensitivity of squallline rear inflow to ice microphysics and environmental humidity. Mon. Wea. Rev., 123, 3175–3193, https://doi.org/10.1175/1520-0493(1995)123<3175:soslri>2.0.co;2.CrossRefGoogle Scholar
  46. Zhang, G. F., M. Xue, Q. Cao, and D. Dawson, 2008: Diagnosing the intercept parameter for exponential raindrop size distribution based on video disdrometer observations: Model development. Journal of Applied Meteorology and Climatology, 47, 2983–2992, https://doi.org/10.1175/2008jamc1876.1.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment ChangeNanjing University of Information Science and TechnologyNanjingChina
  2. 2.Key Laboratory of Mesoscale Severe Weather/Ministry of Education and School of Atmospheric SciencesNanjing UniversityNanjingChina

Personalised recommendations