Advertisement

Advances in Atmospheric Sciences

, Volume 36, Issue 2, pp 206–218 | Cite as

A Three-dimensionalWave Activity Flux of Inertia–Gravity Waves and Its Application to a Rainstorm Event

  • Lu Liu
  • Lingkun Ran
  • Shouting Gao
Original Paper
  • 28 Downloads

Abstract

A three-dimensional transformed Eulerian-mean (3D TEM) equation under a non-hydrostatic and non-geostrophic assumption is deduced in this study. The vertical component of the 3D wave activity flux deduced here is the primary difference from previous studies, which is suitable to mesoscale systems. Using the 3D TEM equation, the energy propagation of the inertia–gravity waves and how the generation and dissipation of the inertia–gravity waves drive the mean flow can be examined. During the mature stage of a heavy precipitation event, the maximum of the Eliassen–Palm (EP) flux divergence is primarily concentrated at the height of 10–14 km, where the energy of the inertia–gravity waves propagates forward (eastward) and upward. Examining the contribution of each term of the 3D TEM equation shows that the EP flux divergence is the primary contributor to the mean flow tendency. The EP flux divergence decelerates the zonal wind above and below the high-level jet at the height of 10 km and 15 km, and accelerates the high-level jet at the height of 12–14 km. This structure enhances the vertical wind shear of the environment and promotes the development of the rainstorm.

Key words

three-dimensional EP flux heavy precipitation inertia–gravity waves 

摘 要

在非地转非静力平衡条件下, 我们成功推导出适用于中小尺度的三维EP通量方程. 其中, 与前人工作的最大区别是在于推导得到的三维EP通量的垂直分量. 利用三维EP通量方程, 我们研究了惯性重力波的能量传播问题以及惯性重力波对背景流场的影响. 我们选取四川地区一次暴雨过程为例. 分析发现在暴雨的成熟阶段, 最大的EP通量散度位于高空10-14km的位置, 此处有惯性重力波向前向上传播. 将EP通量进一步分解后分析发现, EP通量散度是对背景流场的主要贡献项. EP通量散度能够使得高空急流的上下两侧U风速减速, 并且加速高空急流, 从而增强高空急流上下两侧的垂直风切, 进一步促进了暴雨发展.

关键词

三维EP通量 暴雨 惯性重力波 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, D. G., 1983: A finite-amplitude Eliassen-Palm theorem in isentropic coordinates. J. Atmos. Sci., 40, 1877–1883, https://doi.org/10.1175/1520-0469(1983)040<1877:AFAEPT> 2.0.CO;2.CrossRefGoogle Scholar
  2. Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 2031–2048, https://doi.org/10.1175/1520-0469(1976)033 <2031:PWIHAV>2.0.CO;2.CrossRefGoogle Scholar
  3. Andrews, D. G., and M. E. McIntyre, 1978: Generalized Eliassen-Palm and Charney-Drazin theorems for waves on axismmetric mean flows in compressible atmospheres. J. Atmos. Sci., 35, 175–185, https://doi.org/10.1175/1520-0469(1978)035 <0175:GEPACD>2.0.CO;2.CrossRefGoogle Scholar
  4. Chong, M., 2010: The 11 August 2006 squall-line system as observed from MIT Doppler radar during the AMMA SOP. Quart. J. Roy. Meteor. Soc., 136, 209–226, https://doi.org/10.1002/qj.466.CrossRefGoogle Scholar
  5. Chong, M, P. Amayenc, G. Scialom, and J. Testud, 1987: A tropical squall line observed during the COPT 81 experiment in West Africa. Part 1: Kinematic structure inferred from Dual-Doppler radar data. Mon. Wea. Rev., 115, 670–694, https://doi.org/10.1175/1520-0493(1987)115<0670:ATSLOD>2.0. CO;2.Google Scholar
  6. Ding, Y. H., and X. Y. Shen, 1998: The interactions between symmetric disturbance and zonally basic flow Part I: Slant E-P flux theory. Scientia Atmospherica Sinica, 22, 735–743, https://doi.org/10.3878/j.issn.1006-9895.1998.05.08. (in Chinese)Google Scholar
  7. Edmon, H. J. Jr., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen-Palm cross-sections for the troposphere. J. Atmos. Sci., 37, 2600–2616, https://doi.org/10.1175/1520-0469 (1980)037<2600:EPCSFT>2.0.CO;2.CrossRefGoogle Scholar
  8. Eliassen, A., and E. Palm, 1961: On the transfer on energy in stationary mountain-waves. Geofys. Publ.,22, 1–23.Google Scholar
  9. Gao, S. T., H. D. Zhang, and W. S. Lu, 2004: Ageostrophic generalized E-P flux in Baroclinic atmosphere. Chinese Physics Letters, 21, 576–579, https://doi.org/10.1088/0256-307X/21/3/045.CrossRefGoogle Scholar
  10. Gao, S. T., L. K. Ran, and X. F. Li, 2015: The Mesoscale Dynamic Meteorology and its Prediction Method. Meteorological Press, Beijing, China, 89–95. (in Chinese)Google Scholar
  11. Hoskins, B. J., I. N. James, and G. H. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 1595–1612, https://doi.org/10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2.CrossRefGoogle Scholar
  12. Houze, R. A. Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, https://doi.org/10.1029/2004RG000150.CrossRefGoogle Scholar
  13. Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927–945, https://doi.org/10.1175/1520-0493(1994)122<0927: TSMECM>2.0.CO;2.CrossRefGoogle Scholar
  14. Kinoshita, T., and K. Sato, 2013a: A formulation of threedimensional residual mean flow applicable both to inertia–gravity waves and to Rossby waves. J. Atmos. Sci., 70, 1577–1602, https://doi.org/10.1175/JAS-D-12-0137.1.CrossRefGoogle Scholar
  15. Kinoshita, T., and K. Sato, 2013b: A formulation of unified threedimensional wave activity flux of inertia–gravity waves and Rossby waves. J. Atmos. Sci., 70, 1603–1615, https://doi.org/10.1175/JAS-D-12-0138.1.CrossRefGoogle Scholar
  16. Kinoshita, T., Y. Tomikawa, and K. Sato, 2010: On the threedimensional residual mean circulation and wave activity flux of the primitive equations. J. Meteor. Soc. Japan, 88, 373–394, https://doi.org/10.2151/jmsj.2010-307.CrossRefGoogle Scholar
  17. Koch, S. E., and L. M. Siedlarz, 1999: Mesoscale gravity waves and their environment in the central united states during STORM-FEST. Mon. Wea. Rev., 127, 2854–2879, https://doi. org/10.1175/1520-0493(1999)127<2854:MGWATE>2.0.CO; 2.CrossRefGoogle Scholar
  18. Lane, T. P., and F. Q. Zhang, 2011: Coupling between gravity waves and tropical convection at mesoscales. J. Atmos. Sci., 68, 2582–2598, https://doi.org/10.1175/2011JAS3577.1.CrossRefGoogle Scholar
  19. Lee, M.-M., and H. Leach, 1996: Eliassen–Palm flux and eddy potential vorticity flux for a nonquasigeostrophic time-mean flow. J. Phys. Oceanogr., 26, 1304–1319, https://doi.org/10.1175/1520-0485(1996)026<1304:EPFAEP>2.0.CO;2.CrossRefGoogle Scholar
  20. Li, M. C., 1978: Studies on the gravity wave initiation of the excessively heavy rainfall. Scientia Atmospherica Sinica, 2, 201–209, https://doi.org/10.3878/j.issn.1006-9895.1978.03.03. (in Chinese)Google Scholar
  21. Liu, L., L. K. Ran, and S. T. Gao., 2018: Analysis of the characteristics of inertia-gravity waves during an orographic precipitation event. Adv. Atmos. Sci., 35, 604–620, https://doi.org/10.1007/s00376-017-7159-2.CrossRefGoogle Scholar
  22. Lu, C. G., S. E. Koch, and N. Wang, 2005a: Stokes parameter analysis of a packet of turbulence-generating gravity waves. J. Geophys. Res., 110, D20105, https://doi.org/10.1029/2004 JD005736.Google Scholar
  23. Lu, C. G., S. Koch, and N. Wang, 2005b: Determination of temporal and spatial characteristics of atmospheric gravity waves combining cross-spectral analysis and wavelet transformation. J. Geophys. Res., 110, D1109, https://doi.org/10.1029/2004JD004906.Google Scholar
  24. Matsuno, T., 1980: Lagrangian motion of air parcels in the stratosphere in the presence of planetary waves. Pure Appl. Geophys., 118, 189–216, https://doi.org/10.1007/BF01586451.CrossRefGoogle Scholar
  25. Miyahara, S., 2006: A three dimensional wave activity flux applicable to inertio-gravity waves. SOLA, 2, 108–111, https://doi.org/10.2151/sola.2006-028.CrossRefGoogle Scholar
  26. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Lacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663–16682, https://doi.org/10.1029/97JD00237.CrossRefGoogle Scholar
  27. Noda, A., 2010: A general three-dimensional transformed Eulerian mean formulation. SOLA, 6, 85–88, https://doi.org/10.2151/sola.2010-022.CrossRefGoogle Scholar
  28. Pfeffer, R. L., 1992: A study of eddy-induced fluctuations of the zonal-mean wind using conventional and transformed Eulerian diagnostics. J. Atmos. Sci., 49, 1036–1050, https://doi. org/10.1175/1520-0469(1992)049<1036:ASOEIF>2.0.CO;2.CrossRefGoogle Scholar
  29. Plumb, R. A., 1986: Three-dimensional propagation of transient quasi-geostrophic eddies and its relationship with the eddy forcing of the time-mean flow. J. Atmos. Sci., 43, 1657–1678, https://doi.org/10.1175/1520-0469(1986)043 <1657:TDPOTQ>2.0.CO;2.CrossRefGoogle Scholar
  30. Takaya, K., and H. Nakamura, 1997: A formulation of a waveactivity flux for stationary Rossby waves on a zonally varying basic flow. Geophys. Res. Lett., 24, 2985–2988, https://doi.org/10.1029/97GL03094.CrossRefGoogle Scholar
  31. Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095–5115, https://doi.org/10.1175/2008MWR2387.1.Google Scholar
  32. Tung, K. K., 1986: Nongeostrophic theory of zonally averaged circulation. Part I: Formulation. J. Atmos. Sci., 43, 2600–2618, https://doi.org/10.1175/1520-0469(1986)043 <2600:NTOZAC>2.0.CO;2.Google Scholar
  33. Uccelini, L. W., 1975: A case study of apparent gravity wave initiation of severe convective storms. Mon. Wea. Rev., 103, 497–513, https://doi.org/10.1175/1520-0493(1975)103 <0497:ACSOAG>2.0.CO;2.CrossRefGoogle Scholar
  34. Wu, G. X., and B. Chen, 1989: Non-acceleration theorem in a primitive equation system: I. Acceleration of zonal mean flow. Adv. Atmos. Sci., 6, 1–20, https://doi.org/10.1007/BF02656914.Google Scholar
  35. Zeng, Q. C., 1982: On the evolution and interaction of disturbances and zonal flow in rotating barotropic atmosphere. J. Meteor. Soc. Japan, 60, 24–31, https://doi.org/10.2151/jmsj1965. 60.1 24.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Severe WeatherChinese Academy of Meteorological SciencesBeijingChina
  2. 2.Institute of Atmosphere PhysicsChinese Academy SciencesBeijingChina

Personalised recommendations