Advertisement

Advances in Atmospheric Sciences

, Volume 36, Issue 2, pp 173–188 | Cite as

Impacts of the Autumn Arctic Sea Ice on the Intraseasonal Reversal of the Winter Siberian High

  • Zhuozhuo Lü
  • Shengping He
  • Fei Li
  • Huijun Wang
Original Paper

Abstract

During 1979–2015, the intensity of the Siberian high (SH) in November and December–January (DJ) is frequently shown to have an out-of-phase relationship, which is accompanied by opposite surface air temperature and circulation anomalies. Further analyses indicate that the autumn Arctic sea ice is important for the phase reversal of the SH. There is a significantly positive (negative) correlation between the November (DJ) SH and the September sea ice area (SIA) anomalies. It is suggested that the reduction of autumn SIA induces anomalous upward surface turbulent heat flux (SHF), which can persist into November, especially over the Barents Sea. Consequently, the enhanced eddy energy and wave activity flux are transported to mid and high latitudes. This will then benefit the development of the storm track in northeastern Europe. Conversely, when downward SHF anomalies prevail in DJ, the decreased heat flux and suppressed eddy energy hinder the growth of the storm track during DJ over the Barents Sea and Europe. Through the eddy–mean flow interaction, the strengthened (weakened) storm track activities induce decreased (increased) Ural blockings and accelerated (decelerated) westerlies, which makes the cold air from the Arctic inhibited (transported) over the Siberian area. Therefore, a weaker (stronger) SH in November (DJ) occurs downstream. Moreover, anomalously large snowfall may intensify the SH in DJ rather than in November. The ensemble-mean results from the CMIP5 historical simulations further confirm these connections. The different responses to Arctic sea ice anomalies in early and middle winter set this study apart from earlier ones.

Key words

Siberian high Arctic sea ice storm track phase reversal 

摘 要

1979-2015年冬季11月与12月-次年1月(12-1月)的西伯利亚高压(SH)强度常常呈现反相关系, 同时伴随有显著相反的表面温度和大气环流异常. 进一步的分析表明秋季北极海冰异常对上述SH反转现象存在影响. 秋季9月份北极海冰面积与11月(12-1月)西伯利亚高压强度存在显著的正(负)相关关系. 秋季海冰的减少导致巴伦支海区域向上的表面湍流热通量(SHF)增加, 这种向上的异常可持续到11月份, 由此导致局地扰动动能增加以及向临近中-高纬地区的波能量输送, 这有利于欧洲东部, 北部地区风暴轴的发展加强; 然而, 在接下来的12-1月份, 巴伦支海的SHF呈现向下的异常, 减少的热通量导致湍流扰动动能受到抑制, 阻碍了风暴轴的发生发展. 通过瞬变扰动-平均流的相互作用过程, 加强(减弱)的风暴轴活动造成乌拉尔山阻塞频率减少(增加), 纬向西风加速(减速), 不利于(有利于)北极的冷空气到达西伯利亚地区, 进而造成了SH在11月(12-1月)的减弱(增强). 此外, 12-1月份异常偏多的降雪可能进一步加强了该月份的SH, 相比之下11月份降雪的增加并不明显. 基于CMIP5历史模拟的集合平均结果进一步证明了上述关系. 不同于以往研究, 本文指出北极海冰对冬季早期和中期气候的影响存在差异.

关键词

西伯利亚高压 北极海冰 风暴轴 季节内反转 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was supported by the National Key R&D Program of China (Grant No. 2016YFA0600703), the National Natural Science Foundation of China (Grant Nos. 41505073 and 41605059), the Research Council of Norway–supported project SNOWGLACE (Grant No. 244166/E10), and the Young Talent Support Program of the China Association for Science and Technology (Grant No. 2016QNRC001). This study is also a contribution to the Bjerknes Centre for Climate Research, Bergen, Norway.

References

  1. Andrews, D. G., J. R. Holton., and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.Google Scholar
  2. Castanheira, J. M., and H. F. Graf, 2003: North Pacific–North Atlantic relationships under stratospheric control? J. Geophys. Res., 108, 4036, https://doi.org/10.1029/2002JD002754.CrossRefGoogle Scholar
  3. Cattiaux, J., R. Vautard, C. Cassou, P. Yiou, V. Masson-Delmotte, and F. Codron, 2010: Winter 2010 in Europe: A cold extreme in a warming climate. Geophys. Res. Lett., 37, L20704, https://doi.org/10.1029/2010gl044613.Google Scholar
  4. Chang, C. P., and M. M. Lu, 2012: Intraseasonal predictability of siberian high and east asian winter monsoon and its interdecadal variability. J. Climate, 25, 1773–1778, https://doi.org/10.1175/jcli-d-11-00500.1.CrossRefGoogle Scholar
  5. Chen, S. F., R. G. Wu, and W. Chen, 2017: A strengthened impact of November Arctic oscillation on subsequent tropical Pacific sea surface temperature variation since the late-1970s. Climate Dyn., 51, 511–529, https://doi.org/10.1007/s00382-017-3937-x.CrossRefGoogle Scholar
  6. Cohen, J., and D. Entekhabi, 1999: Eurasian snow cover variability and Northern Hemisphere climate predictability. Geophys. Res. Lett., 26, 345–348, https://doi.org/10.1029/1998 gl900321.CrossRefGoogle Scholar
  7. Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7, 627–637, https://doi.org/10.1038/ngeo2234.CrossRefGoogle Scholar
  8. Cohen, J., J. Jones, J. C. Furtado, and E. Tziperman, 2013: Warm Arctic, cold continents: A common pattern related to Arctic sea ice melt, snow advance, and extreme winter weather. Oceanography, 26, 150–160, https://doi.org/10.5670/oceanog.2013.70.CrossRefGoogle Scholar
  9. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, https://doi. org/10.1002/qj.828.CrossRefGoogle Scholar
  10. Deser, C., R. A. Tomas, and S. L. Peng, 2007: The transient atmospheric circulation response to north atlantic SST and sea ice anomalies. J. Climate, 20, 4751–4767, https://doi.org/10.1175/jcli4278.1.CrossRefGoogle Scholar
  11. Ding, Y. H., 1990: Build-up, air mass transformation and propagation of Siberian high and its relations to cold surge in East Asia. Meteor. Atmos. Phys., 44, 281–292, https://doi.org/10.1007/BF01026822.CrossRefGoogle Scholar
  12. Ding, Y. H., and T. N. Krishnamurti, 1987: Heat budget of the Siberian high and the winter monsoon. Mon. Wea. Rev., 115, 2428–2449, https://doi.org/10.1175/1520-0493(1987) 115<2428:HBOTSH>2.0.CO;2.CrossRefGoogle Scholar
  13. Francis, J. A., W. H. Chan, D. J. Leathers, J. R. Miller, and D. E. Veron, 2009: Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent. Geophys. Res. Lett., 36, L07503, https://doi.org/10.1029/2009gl037274.Google Scholar
  14. Gleckler, P. J., K. E. Taylor, and C. Doutriaux, 2008: Performance metrics for climate models. J. Geophys. Res., 113, D06104, https://doi.org/10.1029/2007jd008972.Google Scholar
  15. Gong, D. Y., S. W. Wang, and J. H. Zhu, 2001: East Asian winter monsoon and arctic oscillation. Geophys. Res. Lett., 28, 2073–2076, https://doi.org/10.1029/2000GL012311.CrossRefGoogle Scholar
  16. Gong, D. Y., J. Yang, S. J. Kim, Y. Q. Gao, D. Guo, T. J. Zhou 2011: Spring Arctic Oscillation-East Asian summer monsoon connection through circulation changes over the western North Pacific. Climate Dyn., 37, 2199–2216, https://doi.org/10.1007/s00382-011-1041-1.CrossRefGoogle Scholar
  17. Grise, K. M., S. W. Son, and J. R. Gyakum, 2013: Intraseasonal and interannual variability in north american storm tracks and its relationship to equatorial pacific variability. Mon. Wea. Rev., 141, 3610–3625, https://doi.org/10.1175/mwr-d-12-00322.1.CrossRefGoogle Scholar
  18. Guirguis, K., A. Gershunov, R. Schwartz, and S. Bennett, 2011: Recent warm and cold daily winter temperature extremes in the Northern Hemisphere. Geophys. Res. Lett., 38, L17701, https://doi.org/10.1029/2011gl048762.Google Scholar
  19. Hall, N. M. J., B. J. Hoskins, P. J. Valdes, and C. A. Senior, 1994: Storm tracks in a high-resolution GCM with doubled carbon dioxide. Quart. J. Roy. Meteor. Soc., 120, 1209–1230, https://doi.org/10.1002/qj.49712051905.CrossRefGoogle Scholar
  20. Hartmann, D. L., and F. Lo, 1998: Wave-driven zonal flow vacillation in the Southern Hemisphere. J. Atmos. Sci., 55, 1303–1315, https://doi.org/10.1175/1520-0469(1998)055 <1303:WDZFVI>2.0.CO;2.CrossRefGoogle Scholar
  21. He, S. P., 2015: Asymmetry in the arctic oscillation teleconnection with January cold extremes in Northeast China. Atmos. Oceanic Sci. Lett., 8, 386–391, https://doi.org/10.3878/AOSL20150053.Google Scholar
  22. He, S. P., and H. J. Wang, 2013a: Impact of the November/December Arctic Oscillation on the following January temperature in East Asia. J. Geophys. Res., 118, 12 981–12 998, https://doi.org/10.1002/2013jd020525.Google Scholar
  23. He, S. P., and H. J. Wang, 2013b: Oscillating relationship between the East Asian Winter Monsoon and ENSO. J. Climate, 26, 9819–9838, https://doi.org/10.1175/jcli-d-13-00174.1.CrossRefGoogle Scholar
  24. Held, I. M., 1993: Large-scale dynamics and global warming. Bull. Amer. Meteor. Soc., 74, 228–241, https://doi.org/10.1175/1520-0477(1993)074<0228:LSDAGW>2.0.CO;2.CrossRefGoogle Scholar
  25. Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, https://doi.org/10.1029/2008gl037079.Google Scholar
  26. Hori, M. E., J. Inoue, T. Kikuchi, M. Honda, and Y. Tachibana, 2011: Recurrence of intraseasonal cold air outbreak during the 2009/2010 Winter in Japan and its ties to the atmospheric condition over the Barents-Kara Sea. SOLA, 7, 25–28, https://doi.org/10.2151/sola.2011-007.CrossRefGoogle Scholar
  27. Hoskins, B. J., 2001: Modelling of the transient eddies and their feedback on the mean flow. Large-Scale Dynamical Processes in the Atmosphere. B. Hoskins and R. Pearce, Eds., Academic Press, 169 pp.Google Scholar
  28. Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 1041–1061, https://doi.org/10.1175/1520-0469 (2002)059<1041:NPOTNH>2.0.CO;2.CrossRefGoogle Scholar
  29. Huang, X. T., Y. N. Diao, and D. H. Luo, 2017: Amplified winter Arctic tropospheric warming and its link to atmospheric circulation changes. Atmos. Oceanic Sci. Lett., 10, 435–445, https://doi.org/10.1080/16742834.2017.1394159.CrossRefGoogle Scholar
  30. Inoue, J., M. E. Hori, and K. Takaya, 2012: The role of barents sea ice in the wintertime cyclone track and emergence of a warm-arctic cold-Siberian anomaly. J. Climate, 25, 2561–2568, https://doi.org/10.1175/jcli-d-11-00449.1.CrossRefGoogle Scholar
  31. Joung, C. H., and M. H. Hitchman, 1982: On the role of successive downstream development in east asian polar air outbreaks. Mon. Wea. Rev., 110, 1224–1237, https://doi.org/10.1175/1520-0493(1982)110<1224:otrosd>2.0.co;2.CrossRefGoogle Scholar
  32. Jung, T., M. A. Kasper, T. Semmler, and S. Serrar, 2014: Arctic influence on subseasonal midlatitude prediction. Geophys. Res. Lett., 41, 3676–3680, https://doi.org/10.1002/2014gl059961.CrossRefGoogle Scholar
  33. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP> 2.0.CO;2.CrossRefGoogle Scholar
  34. Kurita, N., 2011: Origin of Arctic water vapor during the icegrowth season. Geophys. Res. Lett., 38, L02709, https://doi. org/10.1029/2010gl046064.Google Scholar
  35. Kushnir, Y., W. A. Robinson, I. Bladé, N. M. J. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15, 2233–2256, https://doi.org/10.1175/1520-0442 (2002)015<2233:AGRTES>2.0.CO;2.CrossRefGoogle Scholar
  36. Lau, N. C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45, 2718–2743, https://doi.org/10.1175/1520-0469(1988)045<2718:votoms>2.0.co;2.CrossRefGoogle Scholar
  37. Lau, N. C., and M. J. Nath, 1991: Variability of the baroclinic and barotropic transient eddy forcing associated with monthly changes in the midlatitude storm tracks. J. Atmos. Sci., 48, 2589–2613, https://doi.org/10.1175/1520-0469 (1991)048<2589:VOTBAB>2.0.CO;2.CrossRefGoogle Scholar
  38. Lehmann, J., and D. Coumou, 2015: The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes. Scientific Reports, 5, 17491, https://doi.org/10.1038/srep17491.CrossRefGoogle Scholar
  39. Li, F., and H. J. Wang, 2013: Autumn sea ice cover, winter northern hemisphere annular mode, and winter precipitation in Eurasia. J. Climate, 26, 3968–3981, https://doi.org/10.1175/jcli-d-12-00380.1.CrossRefGoogle Scholar
  40. Li, F., H. J. Wang, and Y. Q. Gao, 2015: Extratropical ocean warming and winter arctic sea ice cover since the 1990s. J. Climate, 28, 5510–5522, https://doi.org/10.1175/jcli-d-14-00629.1.CrossRefGoogle Scholar
  41. Li, Y. Q., and S. Yang, 2010: A dynamical index for the East Asian winter monsoon. J. Climate, 23, 4255–4262, https://doi.org/10.1175/2010jcli3375.1.CrossRefGoogle Scholar
  42. Liu, J. P., J. A. Curry, H. J. Wang, M. R. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proceedings of the National Academy of Sciences of the United States of America, 109, 4074–4079, https://doi.org/10.1073/pnas.1114910109.CrossRefGoogle Scholar
  43. Liu, J. P., M. R. Song, R. M. Horton, and Y. Y. Hu, 2013: Reducing spread in climate model projections of a September ice-free Arctic. Proceedings of the National Academy of Sciences of the United States of America, 110, 12 571–12 576, https://doi.org/10.1073/pnas.1219716110.CrossRefGoogle Scholar
  44. Magnusdottir, G., C. Deser, and R. Saravanan, 2004: The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part I: Main features and storm track characteristics of the response. J. Climate, 17, 857–876, https://doi.org/1520-0442(2004)017<0857:TEONAS>2.0.CO;2.Google Scholar
  45. Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nature Geoscience, 7, 869–873, https://doi.org/10.1038/ngeo2277.CrossRefGoogle Scholar
  46. Overland, J. E., K. R. Wood, and M. Y. Wang, 2011: Warm Arctic—cold continents: climate impacts of the newly open Arctic Sea. Polar Research, 30, 15787, https://doi.org/10.3402/polar.v30i0.15787.CrossRefGoogle Scholar
  47. Overland, J. E., M. Wang, 2010: Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A: Dynamic Meteorology and Oceanography, 62, 1–9, https://doi.org/10.1111/j.1600-0870.2009.00421.x.CrossRefGoogle Scholar
  48. Overland, J., J. A. Francis, R. Hall, E. Hanna, S. J. Kim, and T. Vihma, 2015: The melting arctic and midlatitude weather patterns: are they connected? J. Climate, 28, 7917–7932, https://doi.org/10.1175/jcli-d-14-00822.1.CrossRefGoogle Scholar
  49. Park, T.-W., Ho, C.-H., and S. Yang, 2011: Relationship between the Arctic Oscillation and cold surges over East Asia. J. Climate, 24, 68–83, https://doi.org/10.1175/2010JCLI3529.1.CrossRefGoogle Scholar
  50. Perovich, D. K., B. Light, H. Eicken, K. F. Jones, K. Runciman, and S. V. Nghiem, 2007: Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: Attribution and role in the ice-albedo feedback. Geophys. Res. Lett., 34, L19505, https://doi.org/10.1029/2007gl031480.Google Scholar
  51. Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002jd002670.CrossRefGoogle Scholar
  52. Rivière, G., and I. Orlanski, 2007: Characteristics of the Atlantic storm-track eddy activity and its relation with the North Atlantic Oscillation. J. Atmos. Sci., 64, 241–266, https://doi.org/10.1175/jas3850.1.CrossRefGoogle Scholar
  53. Ruggieri, P., R. Buizza, and G. Visconti, 2016: On the link between Barents-Kara sea ice variability and European blocking. J. Geophys. Res., 121, 5664–5679, https://doi.org/10.1002/2015jd024021.CrossRefGoogle Scholar
  54. Seierstad, I. A., and J. Bader, 2008: Impact of a projected future Arctic Sea Ice reduction on extratropical storminess and the NAO. Climate Dyn., 33, 937–943, https://doi.org/10.1007/s00382-008-0463-x.CrossRefGoogle Scholar
  55. Serreze, M. C., and R. G. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global and Planetary Change, 77, 85–96, https://doi.org/10.1016/j.gloplacha. 2011.03.004.CrossRefGoogle Scholar
  56. Sorokina, S. A., C. Li, J. J. Wettstein, and N. G. Kvamstø, 2016: Observed atmospheric coupling between barents sea ice and the Warm-Arctic Cold-Siberian anomaly pattern. J. Climate, 29, 495–511, https://doi.org/10.1175/jcli-d-15-0046.1.CrossRefGoogle Scholar
  57. Sperber, K. R., H. Annamalai, I. S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2012: The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn., 41, 2711–2744, https://doi.org/10.1007/s00382-012-1607-6.Google Scholar
  58. Takaya, K., and H. Nakamura, 2001: A formulation of a phaseindependent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608–627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.CrossRefGoogle Scholar
  59. Takaya, K., and H. Nakamura, 2005a: Geographical dependence of upper-level blocking formation associated with intraseasonal amplification of the siberian high. J. Atmos. Sci., 62, 4441–4449, https://doi.org/10.1175/JAS3628.1.CrossRefGoogle Scholar
  60. Takaya, K., and H. Nakamura, 2005b: Mechanisms of intraseasonal amplification of the cold siberian high. J. Atmos. Sci., 62, 4423–4440, https://doi.org/10.1175/JAS3629.1.CrossRefGoogle Scholar
  61. Tang, Q. H., X. J. Zhang, X. H. Yang, and J. A. Francis, 2013: Cold winter extremes in northern continents linked to Arctic sea ice loss. Environmental Research Letters, 8, 014036, https://doi.org/10.1088/1748-9326/8/1/014036.CrossRefGoogle Scholar
  62. Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297–1300, https://doi.org/10.1029/98gl00950.CrossRefGoogle Scholar
  63. Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 1000–1016, https://doi.org/10.1175/1520-0442(2000)013<1000:amitec>2.0.co;2.Google Scholar
  64. Tyrlis, E., and B. J. Hoskins, 2008: Aspects of a Northern hemisphere atmospheric blocking climatology. J. Atmos. Sci., 65, 1638–1652, https://doi.org/10.1175/2007jas2337.1.CrossRefGoogle Scholar
  65. Wang, B., 1992: The vertical structure and development of the ENSO anomaly mode during 1979–1989. J. Atmos. Sci., 49, 698–712, https://doi.org/10.1175/1520-0469(1992)049 <0698:TVSADO>2.0.CO;2.CrossRefGoogle Scholar
  66. Wang, H. J., and S. P. He, 2012a: The increase of snowfall in Northeast China after the mid-1980s. Chinese Science Bulletin, 58, 1350–1354, https://doi.org/10.1007/s11434-012-5508-1.CrossRefGoogle Scholar
  67. Wang, H. J., and S. P. He, 2012b: Weakening relationship between East Asian winter monsoon and ENSO after mid-1970s. Chinese Science Bulletin, 57, 3535–3540, https://doi.org/10.1007/s11434-012-5285-x.CrossRefGoogle Scholar
  68. Wang, J., and M. Ikeda, 2000: Arctic oscillation and Arctic seaice oscillation. Geophys. Res. Lett., 27, 1287–1290, https://doi.org/10.1029/1999gl002389.CrossRefGoogle Scholar
  69. Wegmann, M., and Coauthors, 2015: Arctic moisture source for Eurasian snow cover variations in autumn. Environmental Research Letters, 10, 054015, https://doi.org/10.1088/1748-9326/10/5/054015.CrossRefGoogle Scholar
  70. Wu, B. Y., and J. Wang, 2002: Winter arctic oscillation, Siberian high and east asian winter monsoon. Geophys. Res. Lett., 29, 1897, https://doi.org/10.1029/2002gl015373.Google Scholar
  71. Wu, B. Y., J. Z. Su, and R. H. Zhang, 2011: Effects of autumnwinter Arctic sea ice on winter Siberian High. Chinese Science Bulletin, 56, 3220–3228, https://doi.org/10.1007/s11434-011-4696-4.CrossRefGoogle Scholar
  72. Wu, B. Y., K. Yang, and J. A. Francis, 2017: A cold event in asia during January–February 2012 and its possible association with Arctic Sea ice loss. J. Climate, 30, 7971–7990, https://doi.org/10.1175/jcli-d-16-0115.1.CrossRefGoogle Scholar
  73. Wu, Q. G., and X. D. Zhang, 2010: Observed forcing-feedback processes between Northern Hemisphere atmospheric circulation and Arctic sea ice coverage. J. Geophys. Res., 115, D14119, https://doi.org/10.1029/2009jd013574.Google Scholar
  74. Zeng, D. W., W. J. Zhu, X. J. Ma, P. S. Gu, M. Y. Liu, and J. Gao, 2015: North Atlantic storm track and its infulence on Siberian High in winter. Transactions of Atmospheric Sciences, 38, 232–240, https://doi.org/10.13878/j.cnki.dqkxxb.20121003001. (in Chinese)Google Scholar
  75. Zhao, P., and R. H. Zhang, 2006: Relationship of interannual variation between an eastern Asia-pacific dipole pressure pattern and East Asian monsoon. Chinese Journal of Atmospheric Sciences, 30, 307–316.Google Scholar
  76. Zhou, W., 2017: Impact of Arctic amplification on East Asian winter climate. Atmos. Oceanic Sci. Lett., 10, 385–388, https://doi.org/10.1080/16742834.2017.1350093.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhuozhuo Lü
    • 1
    • 2
    • 3
  • Shengping He
    • 4
  • Fei Li
    • 5
  • Huijun Wang
    • 1
    • 2
    • 6
  1. 1.Nansen-Zhu International Research Centre, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Climate Change Research CenterChinese Academy of SciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.Geophysical InstituteUniversity of Bergen and Bjerknes Centre for Climate ResearchBergenNorway
  5. 5.NILU-Norwegian Institute for Air ResearchKjellerNorway
  6. 6.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of EducationNanjing University of Information Science and TechnologyNanjingChina

Personalised recommendations