Advertisement

Advances in Atmospheric Sciences

, Volume 35, Issue 4, pp 469–478 | Cite as

Effects of Sea-Surface Waves and Ocean Spray on Air–Sea Momentum Fluxes

  • Ting Zhang
  • Jinbao SongEmail author
Original Paper

Abstract

The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.

Key words

drag coefficient marine atmospheric boundary layer ocean spray droplets surface waves 

摘要

本文主要研究了在不同风速和波龄下, 海表面波浪和海洋飞沫对海-气边界层的影响. 首先, 通过在海表面总界面应力中引入波致应力和飞沫应力, 修正了海-气边界层动量模型. 在考虑涡流粘性系数随海表面高度线性变化的前提下, 得到了模型的解析解. 波致应力的计算通过海浪方向谱和海浪增长函数获得, 飞沫应力的计算则是通过参数化描述海洋飞沫液滴与风速剪切相互作用的物理过程. 另外, 计算了在不同海浪成长状态和固定海表面高度处不同风速下, 近海表面风廓线和海表面拖曳系数的值. 同时, 风廓线与拖曳系数的值也与之前没有引进波浪与飞沫作用的模型的解析解进行了对比. 结果表明: 在中低海表面风速下, 海表面波浪对近海风廓线和海表面拖曳系数有影响, 低波龄海浪较高波龄海浪, 对风廓线与拖曳系数的影响更为明显, 而飞沫的影响基本忽略. 然而在高风速下, 海浪大量破碎, 风从破碎波脊吹落的飞沫液滴, 对海-气边界层的动量通量有很强的影响, 进而波龄对动量通量的影响被忽略. 大量飞沫液滴使近海飞沫生成层的湍应力增加, 使得大气向海洋中输送的动能减小, 进而拖曳系数减小. 最后, 拖曳系数的理论值与实验室风波槽所得数据和外海观测数据的对比表明, 不同波龄的海表面波浪和海洋飞沫对海-气边界层动量通量有很重要的影响, 进一步证明模型的准确性.

关键词

海-气边界层 海表面波浪 海洋飞沫 拖曳系数 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The research presented in this paper was supported by the National Natural Science Foundation of China (Grant No. 41576013) and the National Key Research and Development Program of China (Grant No. 2016YFC1401404). The research also was supported by the National Natural Science Foundation of China (Grant No. 41476021 and 41621064) and the Indo-Pacific Ocean Environment Variation and Air–Sea Interaction project (GASI-IPOVAI-04).

References

  1. Andreas, E. L., 1998: A new sea spray generation function for wind speeds up to 32 m s−1. J. Phys. Oceanogr., 28, 2175–2184, https://doi.org/10.1175/1520-0485(1998)028<2175:ANSSGF>2.0.CO;2.CrossRefGoogle Scholar
  2. Andreas, E. L., 2004: Spray stress revisited. J. Phys. Oceanogr., 34, 1429–1440, https://doi.org/10.1175/1520-0485(2004)034<1429:SSR>2.0.CO;2.CrossRefGoogle Scholar
  3. Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639–640, https://doi.org/10.1002/qj.49708135027.CrossRefGoogle Scholar
  4. Donelan, M. A., B. K. Haus, N., Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, https://doi.org/10.1029/2004GL019460.CrossRefGoogle Scholar
  5. Gao, Z. Q., Q. Wang, and M. Y. Zhou, 2009: Wave-dependence of friction velocity, roughness length and drag coefficient over coastal and open water surfaces by using three databases. Adv. Atmos. Sci., 26, 887–894, https://doi.org/10.1007/s00376-009-8130-7.CrossRefGoogle Scholar
  6. Grachev, A. A., C. W. Fairall, J. E. Hare, J. B. Edson, and S. D. Miller, 2003: Wind stress vector over ocean waves. J. Phys. Oceanogr., 33, 2408–2429, https://doi.org/10.1175/1520-0485(2003)033<2408:WSVOOW>2.0.CO;2.CrossRefGoogle Scholar
  7. Hanley, K. E., and S. E. Belcher, 2008: Wave-driven wind jets in the marine atmospheric boundary layer. J. Atmos. Sci., 65, 2646–2660, https://doi.org/10.1175/2007JAS2562.1.CrossRefGoogle Scholar
  8. Hara, T., and S. E. Belcher, 2004: Wind profile and drag coefficient over mature ocean surface wave spectra. J. Phys. Oceanogr., 34, 2345–2358, https://doi.org/10.112275/JPO2633.1.CrossRefGoogle Scholar
  9. Harris, D. L., 1966: The wave-driven wind. J. Atmos. Sci., 23, 688–693, https://doi.org/10.1175/1520-0469(1966)023<0688:TWDW>2.0.CO;2.CrossRefGoogle Scholar
  10. He, H. L., and D. K. Chen, 2011: Effects of surface wave breaking on the oceanic boundary layer. Geogphysical Research Letters, 38, L07604.Google Scholar
  11. Jarosz, E., D. A. Mitchell, D. W. Wang, and W. J. Teague, 2007: Bottom-up determination of air-sea momentum exchange under a major tropical cyclone. Science, 315, 1707–1709, https://doi.org/10.1126/science.1136466.CrossRefGoogle Scholar
  12. Kudryavtsev, V. N., 2006: On the effect of sea drops on the atmospheric boundary layer. J. Geophys. Res., 111, C07020, https://doi.org/10.1029/2005JC002970.CrossRefGoogle Scholar
  13. Kudryavtsev, V. N., and V. K. Makin, 2011: Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Bound.-Layer Meteor., 140, 383–410, https://doi.org/10.1007/s10546-001-9624-2.CrossRefGoogle Scholar
  14. Lewis, D. M., and S. E. Belcher, 2004: Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans, 37, 313–351, https://doi.org/10.1016/j.dynatmoce.2003.11.001.CrossRefGoogle Scholar
  15. Li, S., M. Li, G. P. Gerbi, and J. B. Song, 2013: Roles of breaking waves and Langmuir circulation in the surface boundary layer of a coastal ocean. J. Geophys. Res. Ocean, 118, 5173–5187.CrossRefGoogle Scholar
  16. Liu, B., C. L. Guan, and L. Xie, 2012: The wave state and sea spray related parameterization of wind stress applicable from low to extreme winds. J. Geophys. Res., 117, C00J22, https://doi.org/100.1007/s11802-016-2655-z10.1029/2011JC007786.CrossRefGoogle Scholar
  17. Lucas, C., and C. G. Soares, 2015: On the modelling of swell spectra. Ocean Engineering, 108, 749–759, https://doi.org/10.1016/j.oceaneng.2015.08.017.CrossRefGoogle Scholar
  18. Makin, V. K., 2008: On the possible impact of a following-swell on the atmospheric boundary layer. Bound.-Layer Meteor., 129, 469–478, https://doi.org/10.1007/s10546-008-9320-z.CrossRefGoogle Scholar
  19. Makin, V. K., V. N. Kudryavtsev, and C. Mastenbroek, 1995: Drag of the sea surface. Bound.-Layer Meteor., 73, 159–182, https://doi.org/10.1007/BF00708935.CrossRefGoogle Scholar
  20. Mueller, J. A., and F. Veron, 2009: A sea state-dependent spume generation function. J. Phys. Oceanogr., 39, 2363–2372, https://doi.org/10.1175/2009JPO4113.1.CrossRefGoogle Scholar
  21. Polnikov, V. G., 2011: Integrated model for a wave boundary layer. Marine Science, 1, 10–21, https://doi.org/10.5923/j.ms.20110101.02.CrossRefGoogle Scholar
  22. Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279–283, https://doi.org/10.1038/nature01481.CrossRefGoogle Scholar
  23. Rutgersson, A., A. S. Smedman, and U. Högström, 2001: Use of conventional stability parameters during swell. J. Geophys. Res., 106, 27 117–27 134, https://doi.org/10.1029/2000JC000543.CrossRefGoogle Scholar
  24. Semedo, A., Ø. Saetra, A. Rutgersson, K. K. Kahma, and H. Pettersson, 2009: Wave-induced wind in the marine boundary layer. J. Atmos. Sci., 66, 2256–2271, https://doi.org/10.1175/2009JAS3018.1.CrossRefGoogle Scholar
  25. Song, J. B., W. Fan, S. Li., and M. Zhou, 2015: Impact of surface waves on the steady near-surface wind profiles over the ocean. Bound.-Layer Meteor., 155, C00J21, https://doi.org/10.1007/s13131-016-0959-610.1007/s10546-014-9983-6.CrossRefGoogle Scholar
  26. Song, J. B., 2009: The effects of rand om surface waves on the steady Ekman current solutions. Deep-Sea Res., 56(5), 659–671.CrossRefGoogle Scholar
  27. Troitskaya, Y. I., D. A. Sergeev, A. A. Kand aurov, G. A. Baidakov, M. A. Vdovin, and V. I. Kazakov, 2012: Laboratory and theoretical modeling of air-sea momentum transfer under severe wind conditions. J. Geophys. Res., 117, 50–60, https://doi.org/10.1029/2011/JC007778.CrossRefGoogle Scholar
  28. Xiao, J. B., and A. T. Taylor, 2002: On equilibrium profiles of suspended particles. Bound.-Layer Meteor., 105, 471–482, https://doi.org/10.1023/A:1020395323626.CrossRefGoogle Scholar
  29. Wang, J. J., J. B. Song, Y. S. Huang, and C. H. Fan, 2013: Application of the Hilbert–Huang transform to the estimation of air-sea turbulent fluxes. Bound.-Layer Meteor., 147(3), 553–568, https://doi.org/10.1007/s10546-012-9784-8.CrossRefGoogle Scholar
  30. Zhang, T., J. B. Song, S. Li, and L. G. Yang, 2016: The effects of wind-driven waves and ocean spray on the drag coefficient and near-surface wind profiles over the ocean. Acta Oceanologica Sinica, 35, 79–85, https://doi.org/10.1007/s13131-016-0950-6.Google Scholar
  31. Zhao, D. L., and L. Xie, 2010: A practical bi-parameter formula of gas transfer velocity depending on wave states. Journal of Oceanography, 66, 663–671, https://doi.org/10.1007/s10872-010-0054-4.CrossRefGoogle Scholar

Copyright information

© Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ocean CollegeZhejiang UniversityZhoushanChina
  2. 2.State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of OceanographyState Oceanic AdministrationHangzhouChina

Personalised recommendations