Advertisement

Advances in Atmospheric Sciences

, Volume 35, Issue 4, pp 423–434 | Cite as

Variations in High-frequency Oscillations of Tropical Cyclones over the Western North Pacific

  • Shumin Chen
  • Weibiao LiEmail author
  • Zhiping Wen
  • Mingsen Zhou
  • Youyu Lu
  • Yu-Kun Qian
  • Haoya Liu
  • Rong Fang
Original Paper

Abstract

Variations in the high-frequency oscillations of tropical cyclones (TCs) over the western North Pacific (WNP) are studied in numerical model simulations. Power spectrum analysis of maximum wind speeds at 10 m (MWS10) from an ensemble of 15 simulated TCs shows that oscillations are significant for all TCs. The magnitudes of oscillations in MWS10 are similar in the WNP and South China Sea (SCS); however, the mean of the averaged significant periods in the SCS (1.93 h) is shorter than that in the open water of the WNP (2.83 h). The shorter period in the SCS is examined through an ensemble of simulations, and a case simulation as well as a sensitivity experiment in which the continent is replaced by ocean for Typhoon Hagupit (2008). The analysis of the convergence efficiency within the boundary layer suggests that the shorter periods in the SCS are possibly due to the stronger terrain effect, which intensifies convergence through greater friction. The enhanced convergence strengthens the disturbance of the gradient and thermal wind balances, and then contributes to the shorter oscillation periods in the SCS.

Key words

tropical cyclone high-frequency oscillation western North Pacific South China Sea 

摘 要

本文通过数值模拟研究了西北太平洋(WNP)热带气旋(TC)高频振荡的一些特征. 通过对15个集合模拟TC的中心附近最大10米风速(MWS)的功率谱分析, 所有TC的高频振荡显著, 振荡周期相近. 然而, 在南海(SCS)的振荡周期(平均1.93小时)则显著短于活动在西北太平洋开阔海域TC的振荡周期(平均2.83小时). 通过分析集合模拟的模式输出结果, 和对“黑格比”(2008)的个例模拟及其数值敏感试验(试验中所有陆地被替换为海洋), 得出在南海区域, 由于陆地分布较多, 引起TC边界层摩擦辐合较强. 强的摩擦辐合增加了TC边界层的不稳定因素, 引起了南海区域TC高频振荡周期缩短.

关键词

热带气旋 高频振荡 西北太平洋 南海 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41405048, 41675043, 41375050, 41205032 and 41775094) and Independent Research Project Program of State Key Laboratory of Tropical Oceanography (Grant No. LTOZZ1603). We are grateful for the use of the Tianhe-2 supercomputer (National Supercomputer Center in Guangzhou, Sun Yat-Sen University) and the HPCC (South China Sea Institute of Oceanology, Chinese Academy of Sciences), which were used in all numerical simulations. The authors would like to thank the three anonymous reviewers for their comments to improve the paper.

References

  1. Chan, J. C. L., and W. M. Gray, 1982: Tropical cyclone movement and surrounding flow relationships. Mon. Wea. Rev., 110, 1354–1374, https://doi.org/10.1175/1520-0493(1982)110<1354:TCMASF>2.0.CO;2.CrossRefGoogle Scholar
  2. Charney, J. G., and A. Eliassen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21, 68–75, https://doi.org/10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2.CrossRefGoogle Scholar
  3. Chen, S. M., 1987: Preliminary analysis on the structure and intensity of concentric double-eye typhoons. Adv. Atmos. Sci., 4, 113–118, https://doi.org/10.1007/BF02656667.CrossRefGoogle Scholar
  4. Chen, S. M., W. B. Li, Y. Y. Lu, and Z. P. Wen, 2014: Variations of latent heat flux during tropical cyclones over the South China Sea. Meteorological Applications, 21, 717–723, https://doi.org/10.1002/met.1398.CrossRefGoogle Scholar
  5. Chen, S. M., Y. Y. Lu, W. B. Li, and Z. P. Wen, 2015: Identification and analysis of high-frequency oscillations in the eyewalls of tropical cyclones. Adv. Atmos. Sci., 32, 624–634, https://doi.org/10.1007/s00376-014-4063-x.CrossRefGoogle Scholar
  6. Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale twodimensional model. J. Atmos. Sci., 46, 3077–3107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.CrossRefGoogle Scholar
  7. Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585–604, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.Google Scholar
  8. Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686–688, https://doi.org/10.1038/nature03906.CrossRefGoogle Scholar
  9. Gall, R., J. Tuttle, and P. Hildebrand, 1998: Small-scale spiral band s observed in Hurricanes Andrew, Hugo, and Erin. Mon. Wea. Rev., 126, 1749–1766, https://doi.org/10.1175/1520-0493(1998)126<1749:SSSBOI>2.0.CO;2.CrossRefGoogle Scholar
  10. Gilman, D. L., F. J. Fuglister, and J. M. Mitchell Jr., 1963: On the power spectrum of “red noise”. J. Atmos. Sci., 20, 182–184, https://doi.org/10.1175/1520-0469(1963)020<0182:OTPSON>2.0.CO;2.CrossRefGoogle Scholar
  11. Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of tropical cyclone Diana (1984). J. Atmos. Sci., 61, 1209–1232, https://doi.org/10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.CrossRefGoogle Scholar
  12. Hong, S. Y., and J. O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). Journal of Korean Meteorological Society, 42, 129–151.Google Scholar
  13. Hong, S. Y., J. Dudhia, and S. H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103–120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.CrossRefGoogle Scholar
  14. Kain, J. S., 2004: The Kain Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.CrossRefGoogle Scholar
  15. Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 2784–2802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.CrossRefGoogle Scholar
  16. Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Emanuel, K. A., and D. J. Raymond, Eds. American Meteorological Society, Boston, MA, 24, 165–170, https://doi.org/10.1007/978-1-935704-13-316.Google Scholar
  17. Ki, M. O., and H. Y. Chun, 2011: Inertia gravity waves associated with deep convection observed during the summers of 2005 and 2007 in Korea. J. Geophys. Res., 116(D16), D16122, https://doi.org/doi:10.1029/2011JD015684.CrossRefGoogle Scholar
  18. Kossin, J. P., 2002: Daily hurricane variability inferred from GOES infrared imagery. Mon. Wea. Rev., 130, 2260–2270, https://doi.org/10.1175/1520-0493(2002)130<2260:DHVIFG>2.0.CO;2.CrossRefGoogle Scholar
  19. Kurihara, Y., 1976: On the development of spiral band s in a tropical cyclone. J. Atmos. Sci., 33, 940–958, https://doi.org/10.1175/1520-0469(1976)033<0940:OTDOSB>2.0.CO;2.CrossRefGoogle Scholar
  20. Li, Q. Q., Y. H. Duan, H. Yu, and G. Fu, 2010: Finescale spiral rainband s modeled in a high-resolution simulation of Typhoon Rananim (2004). Adv. Atmos. Sci., 27, 685–704, https://doi.org/10.1007/s00376-009-9127-y.CrossRefGoogle Scholar
  21. Menelaou, K., and M. K. Yau, 2014: On the role of asymmetric convective bursts to the problem of hurricane intensification: Radiation of vortex Rossby waves and wave-mean flow interactions. J. Atmos. Sci., 71, 2057–2077, https://doi.org/10.1175/JAS-D-13-0343.1.CrossRefGoogle Scholar
  22. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 663–16 682, https://doi.org/10.1029/97JD00237.CrossRefGoogle Scholar
  23. Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral band s and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435–465, https://doi.org/10.1002/qj.49712353810.CrossRefGoogle Scholar
  24. Montgomery, M. T., M. E. Nicholls, T. A. Cram, A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355–386, https://doi.org/10.1175/JAS3604.1.CrossRefGoogle Scholar
  25. Peng, S. Q., and Coauthors, 2014: On the mechanisms of the recurvature of super typhoon megi. Sci. Rep., 4, 4451, https://doi.org/10.1038/srep04451.CrossRefGoogle Scholar
  26. Peng, S. Q., and Coauthors, 2015: A real-time regional forecasting system established for the south china sea and its performance in the track forecasts of tropical cyclones during 2011-13. Wea. Forecasting, 30, 471–485, https://doi.org/10.1175/WAF-D-14-00070.1.CrossRefGoogle Scholar
  27. Reasor, P. D., M. D. Eastin, and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137, 603–631, https://doi.org/10.1175/2008MWR2487.1.Google Scholar
  28. Reasor, P. D., M. T. Montgomery, F. D. Marks Jr, and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128, 1653–1680, https://doi.org/10.1175/1520-0493(2000)128<1653:LWSAEO>2.0.CO;2.CrossRefGoogle Scholar
  29. Romine, G. S., and R. B.Wilhelmson, 2006: Finescale spiral band features within a numerical simulation of Hurricane Opal (1995). Mon. Wea. Rev., 134, 1121–1139, https://doi.org/10.1175/MWR3108.1.CrossRefGoogle Scholar
  30. Schecter, D. A., 2008: The spontaneous imbalance of an atmospheric vortex at high Rossby number. J. Atmos. Sci., 65, 2498–2521, https://doi.org/10.1175/2007JAS2490.1.CrossRefGoogle Scholar
  31. Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378–394, https://doi.org/10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.CrossRefGoogle Scholar
  32. Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF Version 3, 1–113. [Available at http://www2.mmm.ucar.edu/wrf/users/docs/arwv3.pdf].Google Scholar
  33. Stott, L., C. Poulsen, S. Lund, and R. Thunell, 2002: Super ENSO and global climate oscillations at millennial time scales. Science, 297, 222–226, https://doi.org/10.1126/science.1071627.CrossRefGoogle Scholar
  34. Torrence, C., and G. T. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 61–78, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.CrossRefGoogle Scholar
  35. Wang, D. L., X. D. Liang, Y. Zhao, and B. Wang, 2008: A comparison of two tropical cyclone bogussing schemes. Wea. Forecasting, 23, 194–204, https://doi.org/10.1175/2007WAF2006094.1.CrossRefGoogle Scholar
  36. Willoughby, H. E., 1976: Inertia-buoyancy waves in hurricanes. J. Atmos. Sci., 34, 1028–1039, https://doi.org/10.1175/1520-0469(1977)034<1028:IBWIH>2.0.CO;2.CrossRefGoogle Scholar
  37. Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395–411, https://doi.org/10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2.CrossRefGoogle Scholar
  38. Ying, M., W. Zhang, H. Yu, X. Q. Lu, J. X. Feng, Y. X. Fan, Y. T. Zhu, and D. Q. Chen, 2014: An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Oceanic Technol., 31, 287–301, https://doi.org/10.1175/JTECH-D-12-00119.1.CrossRefGoogle Scholar
  39. Zhong, W., D. L. Zhang, and H. C. Lu, 2009: A theory for mixed vortex Rossby-gravity waves in tropical cyclones. J. Atmos. Sci., 66, 3366–3381, https://doi.org/10.1175/2009JAS3060.1.CrossRefGoogle Scholar

Copyright information

© Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shumin Chen
    • 1
  • Weibiao Li
    • 1
    Email author
  • Zhiping Wen
    • 1
  • Mingsen Zhou
    • 1
    • 2
  • Youyu Lu
    • 3
  • Yu-Kun Qian
    • 4
  • Haoya Liu
    • 1
  • Rong Fang
    • 1
  1. 1.School of Atmospheric Sciences/Center for Monsoon and Environment Research/Guangdong Province Key Laboratory for Climate Change and Natural Disaster StudiesSun Yat-Sen UniversityGuangzhouChina
  2. 2.Guangzhou Institute of Tropical and Marine MeteorologyChina Meteorological AdministrationGuangzhouChina
  3. 3.Bedford Institute of OceanographyFisheries and Oceans CanadaDartmouthCanada
  4. 4.State Key Laboratory of Tropical Oceanography, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina

Personalised recommendations