Advertisement

Advances in Atmospheric Sciences

, Volume 35, Issue 4, pp 445–456 | Cite as

Evaluating the Capabilities of Soil Enthalpy, Soil Moisture and Soil Temperature in Predicting Seasonal Precipitation

  • Changyu Zhao
  • Haishan ChenEmail author
  • Shanlei Sun
Original Paper

Abstract

Soil enthalpy (H) contains the combined effects of both soil moisture (w) and soil temperature (T) in the land surface hydrothermal process. In this study, the sensitivities of H to w and T are investigated using the multi-linear regression method. Results indicate that T generally makes positive contributions to H, while w exhibits different (positive or negative) impacts due to soil ice effects. For example, w negatively contributes to H if soil contains more ice; however, after soil ice melts, w exerts positive contributions. In particular, due to lower w interannual variabilities in the deep soil layer (i.e., the fifth layer), H is more sensitive to T than to w. Moreover, to compare the potential capabilities of H, w and T in precipitation (P) prediction, the Huanghe–Huaihe Basin (HHB) and Southeast China (SEC), with similar sensitivities of H to w and T, are selected. Analyses show that, despite similar spatial distributions of H–P and T–P correlation coefficients, the former values are always higher than the latter ones. Furthermore, H provides the most effective signals for P prediction over HHB and SEC, i.e., a significant leading correlation between May H and early summer (June) P. In summary, H, which integrates the effects of T and w as an independent variable, has greater capabilities in monitoring land surface heating and improving seasonal P prediction relative to individual land surface factors (e.g., T and w).

Key words

seasonal precipitation prediction land surface process soil enthalpy soil moisture soil temperature 

摘要

土壤焓(H)综合考虑陆面过程中土壤湿度(w)和土壤温度(T)的变化. 首先, 本文使用多元线性回归方法分析HwT的敏感性. 结果表明, TH的贡献为正, 而wH贡献的正负受到土壤固态水的影响. 当土壤中存在大量固态水时, w越多, H越小; 当固态水融化后, w越多, H越大. 深层土壤中w的年际变化较弱, HT的变化更加敏感. 此外, 为了比较Hw, T在降水(P)预测中的潜在能力, 选取Hw, T敏感性相当的黄淮流域, 东南沿海地区作为分析区域. 分析表明, 尽管H-P相关的空间分布与 T-P的相似, 但前者的相关性表现得更强; 最有效的 P预测信号存在于初夏 P与前期5月 H之间. 总之, 作为一个综合 wT变化的物理量, H较单一的陆面因子而言, 能够更加全面地表征陆面热力状况并具有提高降水预测的能力.

关键词

季节性降水预测 陆面过程 土壤焓 土壤湿度 土壤温度 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was jointly supported by the National Natural Science Foundation of China (Grant Nos. 41230422 and 41625019), the Special Fund for Research in the Public Interest of China (Grant No. GYHY201206017), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20130047 and BK20151525), the Research Innovation Program for College Graduates of Jiangsu Province (Grant No. KYLX 0823), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

  1. Amenu, G. G., P. Kumar, and X.-Z. Liang, 2005: Interannual variability of deep-layer hydrologic memory and mechanisms of its influence on surface energy fluxes. J. Climate, 18, 5024–5045, https://doi.org/10.1175/JCLI3590.1.CrossRefGoogle Scholar
  2. Bohren, C. F., and B. A. Albrecht, 1998: Atmospheric Thermodynamics. Oxford University Press, 420 pp.Google Scholar
  3. Bonan, G. B., S. Levis, L. Kergoat, and K.W. Oleson, 2002: Land scapes as patches of plant functional types: An integrating concept for climate and ecosystem models. Global Biogeochemical Cycles, 16, 5-1–5-23, https://doi.org/10.1029/2000GB001360.CrossRefGoogle Scholar
  4. Chen, J., and P. Kumar, 2004: A modeling study of the ENSO influence on the terrestrial energy profile in North America. J. Climate, 17, 1657–1670, https://doi.org/10.1175/1520-0442(2004)017<1657:AMSOTE>2.0.CO;2.CrossRefGoogle Scholar
  5. Collow, T. W., A. Robock, and W. Wu, 2014: Influences of soil moisture and vegetation on convective precipitation forecasts over the United States Great Plains. J. Geophys. Res., 119, 9338–9358, https://doi.org/10.1002/2014JD021454.Google Scholar
  6. Davey, C. A., R. A. Pielke, and K. P. Gallo, 2006: Differences between near-surface equivalent temperature and temperature trends for the Eastern United States: Equivalent temperature as an alternative measure of heat content. Global and Planetary Change, 54, 19–32, https://doi.org/10.1016/j.gloplacha.2005.11.002.CrossRefGoogle Scholar
  7. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828.CrossRefGoogle Scholar
  8. Dirmeyer, P. A., M. J. Fennessy, and L. Marx, 2003: Low skill in dynamical prediction of boreal summer climate: Grounds for looking beyond sea surface temperature. J. Climate, 16, 995–1002, https://doi.org/10.1175/1520-0442(2003)016<0995:LSIDPO>2.0.CO;2.CrossRefGoogle Scholar
  9. Guo, W. D., and S. F. Sun, 2002: Preliminary study on the effects of soil thermal anomaly on land surface energy budget. Acta Meteorologica Sinica, 60, 706–714, https://doi.org/10.3321/j.issn:0577-6619.2002.06.008.(in Chinese)Google Scholar
  10. Hu, Q., and S. Feng, 2004: A role of the soil enthalpy in land memory. J. Climate, 17, 3633–3643, https://doi.org/10.1175/1520-0442(2004)017<3633:AROTSE>2.0.CO;2.CrossRefGoogle Scholar
  11. Hua, W. J., H. S. Chen, S. G. Zhu, S. L. Sun, M. Yu, and L. M. Zhou, 2013: Hotspots of the sensitivity of the land surface hydrological cycle to climate change. Chinese Science Bulletin, 58, 3682–3688, https://doi.org/10.1007/s11434-013-5846-7.CrossRefGoogle Scholar
  12. Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 1138–1140, https://doi.org/10.1126/science.1100217.CrossRefGoogle Scholar
  13. Koster, R. D., and Coauthors, 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, https://doi.org/10.1029/2009GL041677.CrossRefGoogle Scholar
  14. Lawrence, D. M., and A. G. Slater, 2008: Incorporating organic soil into a global climate model. Climate Dyn., 30, 145–160, https://doi.org/10.1007/s00382-007-0278-1.CrossRefGoogle Scholar
  15. Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model. Journal of Advances in Modeling Earth Systems, 3, M03001, https://doi.org/10.1029/2011MS00045.Google Scholar
  16. Li, Z. X., T. J. Zhou, H. S. Chen, D. H. Ni, and R.-H. Zhang, 2015: Modelling the effect of soil moisture variability on summer precipitation variability over East Asia. International Journal of Climatology, 35, 879–887, https://doi.org/10.1002/joc.4023.CrossRefGoogle Scholar
  17. Liu, Z. Y., 2010: Bimodality in a monostable climate-ecosystem: The role of climate variability and soil moisture memory. J. Climate, 23, 1447–1455, https://doi.org/10.1175/2009JCLI3183.1.CrossRefGoogle Scholar
  18. Mahanama, S. P. P., R. D. Koster, R. H. Reichle, and M. J. Suarez, 2008: Impact of subsurface temperature variability on surface air temperature variability: An AGCM study. Journal of Hydrometeorology, 9, 804–815, https://doi.org/10.1175/2008JHM949.1.CrossRefGoogle Scholar
  19. Murray, E. J., 2002: An equation of state for unsaturated soils. Canadian Geotechnical Journal, 39, 125–140, https://doi.org/10.1139/t01-087.CrossRefGoogle Scholar
  20. Oleson, K.W., and Coauthors, 2010: Technical Description of Version 4.0 of the Community Land Model (CLM). NCAR Technical Note. NCAR/TN-478+STR.Google Scholar
  21. Pielke, R. A., 2003: Heat storage within the earth system. Bull. Amer. Meteor. Soc., 84, 331–335, https://doi.org/10.1175/BAMS-84-3-331.CrossRefGoogle Scholar
  22. Qian, B. D., E. G. Gregorich, S. Gameda, D. W. Hopkins, and X. L. Wang, 2011: Observed soil temperature trends associated with climate change in Canada. J. Geophys. Res., 116, D02106, https://doi.org/10.1029/2010JD015012.Google Scholar
  23. Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Science Reviews, 99, 125–161, https://doi.org/10.1016/j.earscirev.2010.02.004.CrossRefGoogle Scholar
  24. Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 3088–3111, https://doi.org/10.1175/JCLI3790.1.CrossRefGoogle Scholar
  25. Sun, S. F., 2005: Parameterization Study of Physical and Biochemical Mechanism and Parameter Model of Land Surface Process. China Meteorology Press, 307 pp. (in Chinese)Google Scholar
  26. Tang, M. C., and E. R. Reiter, 1986: The similarity between the maps of soil temperature and precipitation anomaly of the subsequent season. Plateau Meteorology, 5, 293–307. (in Chinese)Google Scholar
  27. Tung, K.-K., and J. S. Zhou, 2010: The Pacific’s response to surface heating in 130 Yr of SST: La Niña-like or El Niño-like? J. Atmos. Sci., 67, 2649–2657, https://doi.org/10.1175/2010JAS3510.1.CrossRefGoogle Scholar
  28. van den Hurk, B., F. Doblas-Reyes, G. Balsamo, R. D. Koster, S. I. Seneviratne, and H. Camargo Jr., 2012: Soil moisture effects on seasonal temperature and precipitation forecast scores in Europe. Climate Dyn., 38, 349–362, https://doi.org/10.1007/s00382-010-0956-2.CrossRefGoogle Scholar
  29. Wang, Y. H., W. Chen, J. Y. Zhang, and D. Nath, 2013: Relationship between soil temperature in May over Northwest China and the East Asian summer monsoon precipitation. Acta Meteorologica Sinica, 27, 716–724, https://doi.org/10.1007/s13351-013-0505-0.CrossRefGoogle Scholar
  30. Wu, G. X., 2001: Comparison between the complete-form vorticity equation and the traditional vorticity equation. Acta Meteorologica Sinica, 59, 385–392, https://doi.org/10.11676/qxxb2001.042. (in Chinese)Google Scholar
  31. Wu, G. X., Y. M. Liu, and P. Liu, 1999: The effect of spatially nonuniform heating on the formation and variation of sub tropical high I: Scale analysis. Acta Meteorologica Sinica, 57, 257–263, https://doi.org/10.11676/qxxb1999.025. (in Chinese)Google Scholar
  32. Wu, J., and X. J. Gao, 2013: A gridded daily observation dataset over China region and comparison with the other datasets. Chinese Journal of Geophysics, 56, 1102–1111, https://doi.org/10.6038/cjg20130406. (in Chinese)Google Scholar
  33. Wu, L. Y., and J. Y. Zhang, 2014: Strong subsurface soil temperature feedbacks on summer climate variability over the arid/semi-arid regions of East Asia. Atmospheric Science Letters, 15, 307–313, https://doi.org/10.1002/asl2.504.Google Scholar
  34. Wu, W. R., and R. E. Dickinson, 2004: Time scales of layered soil moisture memory in the context of land -atmosphere interaction. J. Climate, 17, 2752–2764, https://doi.org/10.1175/1520-0442(2004)017<2752:TSOLSM>2.0.CO;2.CrossRefGoogle Scholar
  35. Xu, Y., X. J. Gao, Y. Shen, C. H. Xu, Y. Shi, and F. Giorgi, 2009: A daily temperature dataset over China and its application in validating a RCM simulation. Adv. Atmos. Sci., 26, 763–772, https://doi.org/10.1007/s00376-009-9029-z.CrossRefGoogle Scholar
  36. Xue, Y. K., R. Vasic, Z. Janjic, Y. M. Liu, and P. C. Chu, 2012: The impact of spring subsurface soil temperature anomaly in the western U.S. on North American summer precipitation: A case study using regional climate model downscaling. J. Geophys. Res., 117, D11103, https://doi.org/10.1029/2012JD017692.Google Scholar
  37. Yang, K., and J. Y. Zhang, 2016: Spatiotemporal characteristics of soil temperature memory in China from observation. Theor. Appl. Climatol., 126, 739–749, https://doi.org/10.1007/s00704-015-1613-9.CrossRefGoogle Scholar
  38. Zhang, J. Y., and W. J. Dong, 2010: Soil moisture influence on summertime surface air temperature over East Asia. Theor. Appl. Climatol., 100, 221–226, https://doi.org/10.1007/s00704-009-0236-4.CrossRefGoogle Scholar
  39. Zhang, J. Y., and L. Y.Wu, 2014: Impacts of Land -Atmosphere Interactions on Climate over East China. China Meteorological Press, 138 pp. (in Chinese)Google Scholar
  40. Zhang, J. Y., W.-C. Wang, and J. F. Wei, 2008: Assessing land atmosphere coupling using soil moisture from the Global Land Data Assimilation System and observational precipitation. J. Geophys. Res., 113, D17119, https://doi.org/10.1029/2008JD009807.CrossRefGoogle Scholar
  41. Zhang, J. Y., L. Y. Wu, and W. J. Dong, 2011: Land -atmosphere coupling and summer climate variability over East Asia. J. Geophys. Res., 116, D05117, https://doi.org/10.1029/2010JD014714.CrossRefGoogle Scholar
  42. Zhang, R. H., and Z. Y. Zuo, 2011: Impact of spring soil moisture on surface energy balance and summer monsoon circulation over East Asia and precipitation in East China. J. Climate, 24, 3309–3322, https://doi.org/10.1175/2011JCLI4084.1.CrossRefGoogle Scholar
  43. Zhang, R. N., R. H. Zhang, and Z. Y. Zuo, 2017: Impact of Eurasian spring snow decrement on east Asian summer precipitation. J. Climate, 30, 3421–3437, https://doi.org/10.1175/JCLI-D-16-0214.1.CrossRefGoogle Scholar
  44. Zhang, Z. Q., X. J. Zhou, W. L. Li, and M. Sparrow, 2003: Calculation of the energy budget for heterogeneous land surfaces. Earth Interactions, 7, 1, https://doi.org/10.1175/1087-3562(2003)007<0001:COTEBF>2.0.CO;2.CrossRefGoogle Scholar
  45. Zhu, S. G., H. S. Chen, and J. Zhou, 2013: Simulations of global land surface conditions in recent 50 years with three versions of NCAR Community Land Models and their comparative analysis. Transactions of Atmospheric Sciences, 36, 434–446, https://doi.org/10.3969/j.issn.1674-7097.2013.04.006. (in Chinese)Google Scholar

Copyright information

© Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/International Joint Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD)Nanjing University of Information Science and Technology (NUIST)NanjingChina
  2. 2.School of Atmospheric ScienceNanjing University of Information Science and Technology (NUIST)NanjingChina

Personalised recommendations