Advertisement

Advances in Atmospheric Sciences

, Volume 35, Issue 4, pp 376–388 | Cite as

Projected Changes in Temperature and Precipitation Extremes over China as Measured by 50-yr Return Values and Periods Based on a CMIP5 Ensemble

  • Ying Xu
  • Xuejie GaoEmail author
  • Filippo Giorgi
  • Botao Zhou
  • Ying Shi
  • Jie Wu
  • Yongxiang Zhang
Original Paper
Part of the following topical collections:
  1. Climate and Weather Extremes

Abstract

Future changes in the 50-yr return level for temperature and precipitation extremes over mainland China are investigated based on a CMIP5 multi-model ensemble for RCP2.6, RCP4.5 and RCP8.5 scenarios. The following indices are analyzed: TXx and TNn (the annual maximum and minimum of daily maximum and minimum surface temperature), RX5day (the annual maximum consecutive 5-day precipitation) and CDD (maximum annual number of consecutive dry days). After first validating the model performance, future changes in the 50-yr return values and return periods for these indices are investigated along with the inter-model spread. Multi-model median changes show an increase in the 50-yr return values of TXx and a decrease for TNn, more specifically, by the end of the 21st century under RCP8.5, the present day 50-yr return period of warm events is reduced to 1.2 yr, while extreme cold events over the country are projected to essentially disappear. A general increase in RX5day 50-yr return values is found in the future. By the end of the 21st century under RCP8.5, events of the present RX5day 50-yr return period are projected to reduce to < 10 yr over most of China. Changes in CDD-50 show a dipole pattern over China, with a decrease in the values and longer return periods in the north, and vice versa in the south. Our study also highlights the need for further improvements in the representation of extreme events in climate models to assess the future risks and engineering design related to large-scale infrastructure in China.

Key words

CMIP5 extremes return values and periods China 

摘 要

利用CMIP5多个全球气候模式的模拟结果预估了RCP2.6, RCP4.5和RCP8.5温室气体排放情景下不同时期中国地区50年一遇极端温度和降水变化, 包括极端高温(TXx), 极端低温(TNn)最大5日降水量(RX5day)和连续干旱日数(CDD). 首先评估了全球气候模式对中国地区极端温度与降水模拟能力, 在此基础上预估了其变化趋势. 结果表明: 50年一遇TXx的值将增加, TNn的值将减小, 尤其在RCP8.5温室气体高排放情景下, 目前50年一遇的极端高温事件在21世纪末将变为1-2年一遇, 极端冷事件将逐渐消失. 50年一遇的极端降水(RX5day)的量值在未来会增加, 同时目前50年一遇的极端降水事件在21世纪末将变为10年一遇. 极端干旱事件(连续无降雨日数)在中国的北方地区将减少, 而在南方将增加.

关键词

CMIP5全球气候模式 极端温度和降水 50年一遇 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This study was supported by the National Key R&D Program of China (Grant No. 2017YF0605004), the National Natural Science Foundation of China (Grant No. 41675069), and the Climate Change Specific Fund of China (Grant No. CCSF201731). We acknowledge the World Climate Research Programme’s Working Group on Coupled Modeling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. For CMIP, the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led the development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.

References

  1. Chen, H. P., 2013: Projected change in extreme rainfall events in China by the end of the 21st century using CMIP5 models. Chinese Science Bulletin, 58, 1462–1472, https://doi.org/10.1007/s11434-012-5612-2.CrossRefGoogle Scholar
  2. Chen, H. P., J. Q. Sun, and X. L. Chen, 2014: Projection and uncertainty analysis of global precipitation-related extremes using CMIP5 models. International Journal of Climatology, 34, 2730–2748, https://doi.org/10.1002/joc.3871.CrossRefGoogle Scholar
  3. Chen, X. C., 2014: Assessment of the performance over China simulated by CMIP5 multi-models. M.S. thesis, Department of Meteorological Science, Chinese Academy of Meteorological Sciences, Beijing, 93 pp. (in Chinese)Google Scholar
  4. Chen, Y., and P. M., Zhai, 2013: Persistent extreme precipitation events in China during 1951-2010. Climate Research, 57, 143–155, https://doi.org/10.3354/cr01171.CrossRefGoogle Scholar
  5. Dong, S. Y., Y. Xu, B. T. Zhou, and Y. Shi, 2015: Assessment of indices of temperature extremes simulated by multiple CMIP5 models over China. Adv. Atmos. Sci., 32(8), 1077–1091, https://doi.org/10.1007/s00376-015-4152-5.CrossRefGoogle Scholar
  6. Fischer, E. M., and R. Knutti, 2014: Detection of spatially aggregated changes in temperature and precipitation extremes. Geophys. Res. Lett., 41(2), 547–554, https://doi.org/10.1002/2013GL058499.CrossRefGoogle Scholar
  7. Frich, P., L. V. Alexander, P. Della-Marta, B. Gleason, M. Haylock, A. M. G. Klein Tank, and T. Peterson, 2002: Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Research, 19, 193–212, https://doi.org/10.3354/cr019193.CrossRefGoogle Scholar
  8. Gao, X. J., Z. C. Zhao, and F. Giorgi, 2002: Changes of extreme events in regional climate simulations over East Asia. Adv. Atmos. Sci., 19, 927–942, https://doi.org/10.1007/s00376-002-0056-2.CrossRefGoogle Scholar
  9. Gao, X.-J., M.-L. Wang, and F. Giorgi, 2013: Climate change over China in the 21st century as simulated by BCC CSM1.1- RegCM4.0. Atmospheric and Oceanic Science Letters, 6(5), 381–386, https://doi.org/10.3878/j.issn.1674-2834.13.0029.CrossRefGoogle Scholar
  10. Gao, X. J., Y. Xu, Z. C. Zhao, J. S. Pal, and F. Giorgi, 2006: On the role of resolution and topography in the simulation of East Asia precipitation. Theor. Appl. Climatol., 86, 173–185, https://doi.org/10.1007/s00704-005-0214-4.CrossRefGoogle Scholar
  11. Gao, X. J., Y. Shi, R. Y. Song, F. Giorgi, Y. G. Wang, and D. F. Zhang, 2008: Reduction of future monsoon precipitation over China: Comparison between a high resolution RCM simulation and the driving GCM. Meteor. Atmos. Phys., 100, 73–86, https://doi.org/10.1007/s00703-008-0296-5.CrossRefGoogle Scholar
  12. Gao, X. J., Y. Shi, and F. Giorgi, 2016: Comparison of convective parameterizations in RegCM4 experiments with CLM as the land surface model over China. Atmos. Oceanic Sci. Lett., 6, 246–254, https://doi.org/10.1080/16742834.2016.1172938.CrossRefGoogle Scholar
  13. Giorgi, F., C. Jones, and G. Asrar, 2009: Addressing climate information needs at the regional level: The CORDEX framework. WMO Bulletin, 58, 175–183. Giorgi, F., E. Coppola, and F. Raffaele, 2014b: A consistent picture of the hydroclimatic response to global warming from multiple indices: Models and observations. J. Geophys. Res., 119, 11 695–11 708, https://doi.org/10.1002/2014JD022238.Google Scholar
  14. Giorgi, F., J. W. Hurrell, M. R. Marinucci, and M. Beniston, 1997: Elevation dependency of the surface climate change signal: A model study. J. Climate, 10, 288–296, https://doi.org/10.1175/1520-0442(1997)010<0288:EDOTSC>2.0.CO;2.CrossRefGoogle Scholar
  15. Giorgi, F., E.-S. Im, E. Coppola, N. S. Diffenbaugh, X. J. Gao, L. Mariotti, and Y. Shi, 2011: Higher hydroclimatic intensity with global warming. J. Climate, 24, 5309–5324, https://doi.org/10.1175/2011JCLI3979.1.CrossRefGoogle Scholar
  16. Giorgi, F., and Coauthors, 2014a: Changes in extremes and hydroclimatic regimes in the CREMA ensemble projections. Climatic Change, 125, 39–51, https://doi.org/10.1007/s10584-014-1117-0.CrossRefGoogle Scholar
  17. Hosking, J. R. M., 1990: L-moments: Analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society. Series B, 52, 105–124.Google Scholar
  18. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1029 pp.Google Scholar
  19. Jiang, D.-B., H.-J. Wang, and X.-M. Lang, 2004: Multimodel ensemble prediction for climate change trend of China under SRES A2 scenario. Chinese Journal of Geophysics, 47, 878–886, https://doi.org/10.1002/cjg2.564.CrossRefGoogle Scholar
  20. Kharin, V. V., F. W. Zwiers, and X. B. Zhang, 2005: Intercomparison of near-surface temperature and precipitation extremes in AMIP-2 simulations, reanalyses, and observations. J. Climate, 18, 5201–5223, https://doi.org/10.1175/JCLI3597.1.CrossRefGoogle Scholar
  21. Kharin, V. V., F. W. Zwiers, X. B. Zhang, and G. C. Hegerl, 2007: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Climate, 20, 1419–1444, https://doi.org/10.1175/JCLI4066.1.CrossRefGoogle Scholar
  22. Kharin, V. V., F. W. Zwiers, X. Zhang, and M. Wehner, 2013: Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change, 119, 345–357, https://doi.org/10.1007/s10584-013-0705-8.CrossRefGoogle Scholar
  23. Kunkel, K. E., T. R. Karl, D. R. Easterling, K. Redmond, J. Young, X. G. Yin, and P. Hennon, 2013: Probable maximum precipitation and climate change. Geophys. Res. Lett., 40, 1402–1408, https://doi.org/10.1002/grl.50334.CrossRefGoogle Scholar
  24. Meehl, G. A., C. Covey, K. E. Taylor, T. Delworth, R. J. Stouffer, M. Latif, B. McAvaney, and J. F. B. Mitchell, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 1383–1394. https://doi.org/10.1175/BAMS-88-9-1383.CrossRefGoogle Scholar
  25. Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747–756, https://doi.org/10.1038/nature08823.CrossRefGoogle Scholar
  26. Qian, W. H., J. L. Fu, and Z. W. Yan, 2007: Decrease of light rain events in summer associated with a warming environ-ment in China during 1961-2005. Geophys. Res. Lett., 34(11), L11705, https://doi.org/10.1029/2007GL029631.CrossRefGoogle Scholar
  27. Qin, D. H., 2012: The Sythetic Report of Assessment of Climate and Environment Changes in China: 2012. Meteorological Press, 87 pp.Google Scholar
  28. Seneviratne, S. I., and Coauthors, 2012: Changes in climate extremes and their impacts on the natural physical environment. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, C. B. Field et al., Eds., Cambridge University Press, Cambridge, UK, and New York, NY, USA, 109–230.CrossRefGoogle Scholar
  29. Sillmann, J., V. V. Kharin, X. Zhang, F. W. Zwiers, and D. Bronaugh, 2013a: Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res., 118, 1716–1733, https://doi.org/10.1002/jgrd.50203.Google Scholar
  30. Sillmann, J., V. V. Kharin, F. W. Zwiers, X. Zhang, and D. Bronaugh, 2013b: Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res., 118, 2473–2493, https://doi.org/10.1002/jgrd.50188.Google Scholar
  31. Su, B. D., B. Xiao, D. M. Zhu, and T. Jiang, 2005: Trends in frequency of precipitation extremes in the Yangtze River basin, China: 1960-2003. Hydrological Sciences Journal, 50, 492, https://doi.org/10.1623/hysj.50.3.479.65022.CrossRefGoogle Scholar
  32. Sun, Q. H., C. Y. Miao, and Q. Y. Duan, 2015: Comparative analysis of CMIP3 and CMIP5 global climate models for simulating the daily mean, maximum, and minimum temperatures and daily precipitation over China. J. Geophys. Res., 120, 4806–4824, https://doi.org/10.1002/2014JD022994.Google Scholar
  33. Taylor, K. E, B. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1.CrossRefGoogle Scholar
  34. Tebaldi, C., K. Hayhoe, J. M. Arblaster, and G. A. Meehl, 2006: Going to the extremes: An intercomparison of modelsimulated historical and future changes in extreme events. Climatic Change, 79, 185–211, https://doi.org/10.1007/s10584-006-9051-4.CrossRefGoogle Scholar
  35. Toreti, A., and Coauthors, 2013: Projections of global changes in precipitation extremes from Coupled Model Intercomparison Project Phase 5 models. Geophys. Res. Lett., 40, 4887–4892, https://doi.org/10.1002/grl.50940.CrossRefGoogle Scholar
  36. Wu, J., and X. J. Gao, 2013: A gridded daily observation dataset over China region and comparison with the other datasets. Chinese Journal of Geophysics, 56, 1102–1111, https://doi.org/10.6038/cjg20130406. (in Chinese with English abstract)Google Scholar
  37. Wu, J., X. J. Gao, and Y. Shi, 2012: Changes of 20-year return temperature and precipitation extremes over China simulated by RegCM3. Progressus Inquisitiones de Mutatione Climatis, 8, 243–249, https://doi.org/10.3969/j.issn.1673-1719.2012.04.002.(in Chinese)Google Scholar
  38. Wu, J., X. J. Gao, Y. Shi, and F. Giorgi, 2011: Climate change over Xinjiang region in the 21st century simulated by a high resolution regional climate model. Journal of Glaciology and Geocryology, 33(3), 479–487. (in Chinese)Google Scholar
  39. Wuebbles, D., and Coauthors, 2014: CMIP5 climate model analyses: Climate extremes in the United States. Bull. Amer. Meteor. Soc., 95, 571–583, https://doi.org/10.1175/BAMS-D-12-00172.1.CrossRefGoogle Scholar
  40. Xu, C. H., 2010: Simulation and projection for extremes climate events in China by global climate models. PhD dissertation, Institute of Atmospheric Physics, Chinese Academy of Science. (in Chinese)Google Scholar
  41. Xu, J. Y., Y. Shi, X. J. Gao, and F. Giorgi, 2013: Projected changes in climate extremes over China in the 21st century from a high resolution regional climate model (RegCM3). Chinese Science Bulletin, 58, 1443–1452, https://doi.org/10.1007/s11434-012-5548-6.CrossRefGoogle Scholar
  42. Xu, Y., X. J. Gao, and F. Giorgi, 2010: Upgrades to the reliability ensemble averaging method for producing probabilistic climate-change projections. Climate Research, 41, 61–81, https://doi.org/10.3354/cr00835.CrossRefGoogle Scholar
  43. Xu, Y., C. H. Xu, X. J. Gao, and Y. Luo, 2009a: Projected changes in temperature and precipitation extremes over the Yangtze River Basin of China in the 21st century. Quaternary International, 208, 44–52, https://doi.org/10.1016/j.quaint.2008.12.020.CrossRefGoogle Scholar
  44. Xu, Y., X. J. Gao, Y. Shi, and B. T. Zhou, 2015a: Detection and attribution analysis of annual mean temperature changes in China. Climate Research, 63, 61–71, https://doi.org/10.3354/cr01283.CrossRefGoogle Scholar
  45. Xu, Y., J. Wu, Y. Shi, B.-T. Zhou, R.-K. Li, and J. Wu, 2015b: Change in extreme climate events over China based on CMIP5. Atmos. Oceanic Sci. Lett., 8(4), 185–192, https://doi.org/10.3878/AOSL20150006.CrossRefGoogle Scholar
  46. Xu, Y., X. J. Gao, Y. Shen, C. H. Xu, Y. Shi, and F. Giorgi, 2009b: A daily temperature dataset over China and its application in validating a RCM simulation. Adv. Atmos. Sci., 26(4), 763–772, https://doi.org/10.1007/s00376-009-9029-z.CrossRefGoogle Scholar
  47. Zhai, P. M., and X. H. Pan, 2003: Trends in temperature extremes during 1951-1999 in China. Geophys. Res. Lett., 30(17), 1913, https://doi.org/10.1029/2003GL018004.CrossRefGoogle Scholar
  48. Zhai, P. M., A. J. Sun, F. M. Ren, X. N. Liu, B. Gao, and Q. Zhang, 1999: Changes of climate extremes in China. Climatic Change, 42(1), 203–218, https://doi.org/10.1023/A:1005428602279.CrossRefGoogle Scholar
  49. Zhang, D. F., X. J. Gao, L. C. Ouyang, and W. J. Dong, 2008: Simulation of present climate over East Asia by a regional climate model. Journal of Tropical Meteorology, 14(1), 19–23.Google Scholar
  50. Zhang, H., and P. M. Zhai, 2011: Temporal and spatial characteristics of extreme hourly precipitation over eastern China in the warm season. Adv. Atmos. Sci., 28, 1177–1183, https://doi.org/10.1007/s00376-011-0020-0.CrossRefGoogle Scholar
  51. Zhang, X. B., L. Alexand er, G. C. Hegerl, P. Jones, A. K. Tank, T. C. Peterson, B. Trewin, and F. W. Zwiers, 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisciplinary Reviews: Climate Change, 2, 851–870, https://doi.org/10.1002/wcc.147.Google Scholar
  52. Zhang, Y., Y. L. Xu, W. J. Dong, L. J. Cao, and M. Sparrow, 2006: A future climate scenario of regional changes in extreme climate events over China using the PRECIS climate model. Geophys. Res. Lett., 33, L24702, https://doi.org/10.1029/2006GL027229.CrossRefGoogle Scholar
  53. Zhou, B. T., Q. H.Wen, Y. Xu, L. C. Song, and X. B. Zhang, 2014: Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles. J. Climate, 27, 6591–6611, https://doi.org/10.1175/JCLI-D-13-00761.1.CrossRefGoogle Scholar

Copyright information

© Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ying Xu
    • 1
  • Xuejie Gao
    • 2
    • 5
    Email author
  • Filippo Giorgi
    • 3
  • Botao Zhou
    • 1
    • 4
  • Ying Shi
    • 1
  • Jie Wu
    • 2
  • Yongxiang Zhang
    • 1
  1. 1.National Climate CenterChina Meteorological AdministrationBeijingChina
  2. 2.Climate Change Research Center, Institute of Atmospheric SciencesChinese Academy of SciencesBeijingChina
  3. 3.The Abdus Salam International Centre for Theoretical PhysicsTriesteItaly
  4. 4.CMA-NJU Joint Laboratory for Climate Prediction Studies (LCPS/CMA-NJU)NanjingChina
  5. 5.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations