Advances in Atmospheric Sciences

, Volume 33, Issue 3, pp 294–308 | Cite as

Simulation of the interface between the Indian summer monsoon and the East Asian summer monsoon: Intercomparison between MPI-ESM and ECHAM5/MPI-OM

  • Yiran Guo
  • Jie CaoEmail author
  • Hui Li
  • Jian Wang
  • Yuchao Ding


The time-mean and interannual variability of the interface between the Indian summer monsoon and East Asian summer monsoon (IIE) was assessed using both Max-Planck-Institute Earth System Model (MPI-ESM) and ECHAM5/MPI-OM and by calculating diagnostics and skill metrics around the IIE area. Progress has been made in modeling these aspects by moving from ECHAM5/MPI-OM to MPI-ESM. MPI-ESM is more skillful than ECHAM5/MPI-OM in modeling the time-mean state and the extreme condition of the IIE. Though simulation of the interannual variability significantly deviates to some extent in both MPI-ESM and ECHAM5/MPI-OM, MPI-ESM-LR shows better skill in reflecting the relationship among sea surface temperature anomalies over the Pacific, circulation anomalies over East Asia, and IIE variability. The temperature becomes warmer under the RCP2.6 and RCP8.5 scenarios in comparison with the historical experiments, but the position of the IIE and the key physical process in relation to the IIE variability almost remains the same, suggesting that the Indian summer monsoon tends to change in phase with the East Asian summer monsoon under each RCP scenario. The relatively realistic description of the physical processes modulated by terrain in MPI-ESM may be one of the most important reasons why MPI-ESM performs better in simulating the IIE.

Key words

Asian summer monsoon IIE MPI-ESM ECHAM5/MPI-OM intercomparison 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Annamalai, H., K. Hamilton, and K. R. Sperber, 2007: The South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. J. Climate, 20, 1071–1092.CrossRefGoogle Scholar
  2. Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42(7–8), 1999–2018, doi: 10.1007/s00382-013-1783-z.CrossRefGoogle Scholar
  3. Brovkin, V., T. Raddatz, C. H. Reick, M. Claussen, and V. Gayler, 2009: Global biogeophysical interactions between forest and climate. Geophys. Res. Lett., 36, L07405, doi: 10.1029/2009 GL037543.CrossRefGoogle Scholar
  4. Cao, J., J. M. Hu, and Y. Tao, 2012: An index for the interface between the Indian summer monsoon and the East Asian summer monsoon. J. Geophys. Res., 117(D18), D18108, doi: 10.1029/2012JD017841.CrossRefGoogle Scholar
  5. Chen, W., 2002: Impacts of El Ni˜no and La Ni˜na on the cycle of the East Asian winter and summer monsoon. Chinese J. Atmos. Sci., 26, 595–610. (in Chinese)Google Scholar
  6. Compo, G. P., J. S. Whitaker, and P. D. Sardeshmukh, 2006: Feasibility of a 100 year reanalysis using only surface pressure data. Bull. Amer. Meteor. Soc., 87, 175–190, doi: 10.1175/ BAMS-87-2-175.CrossRefGoogle Scholar
  7. Compo, G. P., and Coauthors, 2011: The twentieth century reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 1–28. Ding, Y. H., 1994: The summer monsoon in East Asia. Monsoons over China, Kluwer Acad., 90 pp.CrossRefGoogle Scholar
  8. Flohn, H., 1957: Large-scale aspects of the “summer monsoon” in South and East Asia. J. Meteor. Soc. Japan, 75, 180–186.CrossRefGoogle Scholar
  9. Giorgetta, M., and Coauthors, 2013: The atmospheric general circulation model ECHAM6: Model description. [Available online at http://wwwmpimetmpgde/fileadmin/publikationen/ Reports/WEB BzE 135pdf]Google Scholar
  10. Guilyardi, E., H. Bellenger, M. Collins, S. Ferrett, W. J. Cai, and A. T. Wittenberg, 2012: A first look at ENSO in CMIP5. Clivar Exchanges, 17(1), 29–32.Google Scholar
  11. Hagemann, S., A. Loew, and A. Andersson, 2013: Combined evaluation of MPI-ESM land surface water and energy fluxes. J. Adv. Model. Earth Syst., 5, 259–286.Google Scholar
  12. Huang, P., P. F. Wang, K. M. Hu, G. Huang, Z. H. Zhang, Y. Liu, and B. L. Yan, 2014: An introduction to the integrated climate model of the center for monsoon system research and its simulated influence of El Ni˜no on East Asian-western North Pacific climate. Adv. Atmos. Sci., 31(5), 1136–1146, doi: 10.1007/s00376-014-3233-1.CrossRefGoogle Scholar
  13. Huang, R. H., Y. H. Xu, P. F.Wang, and L. T. Zhou, 1998: The features of the catastrophic flood over the Changjiang river basin during the summer of 1998 and cause exploration. Climatic and Environmental Research, 3(4), 300–313. (in Chinese)Google Scholar
  14. Huang, R. H., J. L. Chen, L. Wang, and Z. D. Lin, 2012: Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system. Adv. Atmos. Sci., 29, 910–942.CrossRefGoogle Scholar
  15. Ilyina, T., K. D. Six, J. Segschneider, E. Maier-Reimer, H. M. Li, and I. N´u˜nez-Riboni, 2013: Global ocean biogeochemistry model HAMOCC: Model architecture and performance as component of the MPI-Earth system model in different CMIP5 experimental realizations. Journal of Advances in Modeling Earth Systems, 5, 287–315.CrossRefGoogle Scholar
  16. Jin, Z. H., and L. X. Chen, 1982: On the medium-range oscillation of the East Asian monsoon circulation system and its relation with the Indian monsoon system. The National Symposium Collections on the Tropical Summer Monsoon, People’s Press Yunnan Province, Kunming, China, 204–215. (in Chinese)Google Scholar
  17. Jungclaus, J. H., and Coauthors, 2013: Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model. J. Adv. Model. Earth Syst., 5, 422–446.CrossRefGoogle Scholar
  18. Krishnamurti, T. N., and H. N. Bhalme, 1976: Oscillations of a monsoon system. Part I. Observational aspects. J. Atmos. Sci., 33, 1937–1954.Google Scholar
  19. Lau, K. M., and M. T. Li, 1984: The monsoon of East Asia and its global associations—A survey. Bull. Amer. Meteor. Soc., 65, 114–125.CrossRefGoogle Scholar
  20. Lee, J.-Y., and B. Wang, 2012: Future change of global monsoon in the CMIP5. Clim. Dyn., 42(1–2), 101–119, doi: 10.1007/s00382-012-1564-0.Google Scholar
  21. Li, J. P., and L. Zhang, 2009: Wind onset and withdrawal of Asian summer monsoon and their simulated performance in AMIP models. Climate Dyn., 32, 935–968.CrossRefGoogle Scholar
  22. Liu, Y. M., G. X. Wu, H. Liu, and P. Liu, 1999: The effect of spatially nonuniform heating on the formation and variation of subtropical high. Part III: Condensation heating and South Asia high and western Pacific subtropical high. Acta Meteorologica Sinica, 57(5), 525–538. (in Chinese)Google Scholar
  23. Lu, J., G. Chen, and D. M. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Ni˜no versus global warming. J. Climate, 21(22), 5835–5851.CrossRefGoogle Scholar
  24. Lu, R. Y., and Y. H. Fu, 2010: Intensification of East Asian summer rainfall interannual variability in the twenty-first century simulated by 12 CMIP3 coupled models. J. Climate, 23(12), 3316–3331.CrossRefGoogle Scholar
  25. Marsland, S. J., H. Haak, J. H. Jungclaus, M. Latif, and F. Röske, 2003: The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model., 5, 91–127.CrossRefGoogle Scholar
  26. Reick, C. H., T. Raddatz, V. Brovkin, and V. Gayler, 2013: Representation of natural and anthropogenic land cover change in MPI-ESM. J. Adv. Model. Earth Syst., 5, 459–482.CrossRefGoogle Scholar
  27. Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5 Part I: Model description. Max Planck Institute für Meteorology Rep, No. 349, 127 pp.Google Scholar
  28. Roeckner, E., and Coauthors, 2006: Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J. Climate, 19, 3771–3791.CrossRefGoogle Scholar
  29. Roeckner, E., T. Mauritsen, M. Esch, and R. Brokopf, 2012: Im pact of melt ponds on Arctic sea ice in past and future climates as simulated by MPI-ESM. J. Adv. Model. Earth Syst., 4, M00A02, doi: 10.1029/2012MS000157.CrossRefGoogle Scholar
  30. Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean temp analysis (1880–2006). J. Climate, 21, 2283–2296.CrossRefGoogle Scholar
  31. Sperber, K. R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2013: The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn., 41, 2711–2744.Google Scholar
  32. Stevens, B., and Coauthors, 2013: Atmospheric component of the MPI-M earth system model: ECHAM6. J. Adv. Model. Earth Syst., 5, 146–172.CrossRefGoogle Scholar
  33. Sui, C.-H., P.-H. Chung, and T. Li, 2007: Interannual and interdecadal variability of the summertime western North Pacific subtropical high. Geophys. Res. Lett., 34(11), doi: 10.1029/2006GL029204.Google Scholar
  34. Tao, S. Y., and L. X. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C. P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, Oxford, U. K., 60–92.Google Scholar
  35. ai]Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106(D7), 7183–7192, doi: 10.1029/2000JD900719.CrossRefGoogle Scholar
  36. Wang, B., and LinHo, 2002: Rainy season of the Asian–Pacific summer monsoon. J. Climate, 15, 386–398.CrossRefGoogle Scholar
  37. Webster, P. J., V. O. Maga˜na, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophy. Res., 103, 14451–14510.CrossRefGoogle Scholar
  38. Whitaker, J. S., G. P. Compo, X. Wei, and T. M. Hamill, 2004: Reanalysis without radiosondes using ensemble data assimilation. Mon. Wea. Rev., 132, 1190–1200.CrossRefGoogle Scholar
  39. Wu, G. X., Y. M. Liu, and P. Liu, 1999: The effect of spatially nonuniform heating on the formation and variation of subtropical high. Part I: Scale analysis. Acta Meteorologica Sinica, 57(3), 257–263. (in Chinese)Google Scholar
  40. Wu, G. X., Y. M. Liu, B. He, Q. Bao, A. M. Duan, and F. F. Jin, 2012: Thermal controls on the Asian summer monsoon. Scientific Reports, 2, 404, doi: 10.1038/srep00404.CrossRefGoogle Scholar
  41. Xie, S. P., K. M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian ocean capacitor effect on indo–Western Pacific climate during the summer following El Ni˜no. J. Climate, 22, 730–747.CrossRefGoogle Scholar
  42. Yang, H., and S. Q. Sun, 2003: Longitudinal displacement of the subtropical high in the western Pacific in summer and its influence. Adv. Atmos. Sci., 20(6), 921–933, doi: 10.1007/ BF02915515.CrossRefGoogle Scholar
  43. Zhao, D. M., and C. B. Fu, 2010: Comparisons of low-level circulation characteristics between ECHAM5/MPI-OM results and NCEP/NCAR re-analysis data in East Asia. Atmos. Oce. Sci. Lett., 3, 189–194.CrossRefGoogle Scholar
  44. Zhou, T. J., B. Wu, and B. Wang, 2009: How well do atmospheric general circulation models capture the leading modes of the interannual variability of the Asian–Australian monsoon? J. Climate, 22, 1159–1173.CrossRefGoogle Scholar
  45. Zhu, Q. G., J. H. He, and P. X. Wang, 1986: A study of circulation differences between east-Asian and Indian summer monsoons with their interaction. Adv. Atmos. Sci., 3, 466–477, doi: 10.1007/BF02657936.CrossRefGoogle Scholar

Copyright information

© Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag Berlin Heidelberg 2016

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, and provide a link to the Creative Commons license. You do not have permission under this license to share adapted material derived from this article or parts of it.

The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this license, visit (

Authors and Affiliations

  • Yiran Guo
    • 1
  • Jie Cao
    • 1
    • 2
    Email author
  • Hui Li
    • 1
  • Jian Wang
    • 1
  • Yuchao Ding
    • 1
  1. 1.Department of Atmospheric SciencesYunnan UniversityKunmingChina
  2. 2.Yunnan Key Laboratory of International Rivers and Transboundary Eco-securityKunmingChina

Personalised recommendations