Skip to main content

Advertisement

Log in

Pattern of pore water nutrients in planted and non-planted soilless substrates as affected by the addition of biochars from wood gasification

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The primary objective of this study was to evaluate the effects of partial replacement of peat by hardwood (poplar) or softwood (spruce) gasification biochars on nutrient release and retention and the effectiveness of biochars to neutralize peat acidity in non-planted and planted (basil) substrates during 36 days of incubation. Pots (1L) filled with biochars+peat and with limed peat (control) were drenched with fertilizing solutions and watered at pF1. pH and nutrients content in substrate pore water were determined in Rhizon samples taken at 15, 22, 29, and 36 days of incubation. The hardwood biochar was more efficient than the softwood biochar in neutralizing both peat acidity and the acidification induced by root activity. Both biochars improved ammonia removal from pore water; this effect increased with time and was particularly noticeable for the hardwood biochar, which induced an almost complete depletion of the fertilizer-derived NH4 +-N. The hardwood biochar also account for high levels of NO3 -N in pore water, even though a decline over time was detected. Both biochars increased pore water potassium with a higher buffering power of the softwood biochar in respect to the hardwood one. Fluctuation of calcium and magnesium concentrations was related with changes in pH due to abiotic and biotic processes. Pore water composition in planted substrates was affected by plant uptake and by root driven changes in substrates’ pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aendekerk TGL (2000) International substrate manual: analysis, characteristics, recommendations. Elsevier International Business Information, Amsterdam

    Google Scholar 

  • Altland JE, Locke JC (2012) Biochar affects macronutrient leaching from a soilless substrate. HortSci 47:1136–1140

    CAS  Google Scholar 

  • Al-Wabel MI, Al-Omran A, El-Naggar AH, Nadeem M, Usman ARA (2013) Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour Technol 131:374–379. doi:10.1016/j.biortech.2012.12.165

    Article  CAS  PubMed  Google Scholar 

  • Anderson CR, Condron LM, Clough TJ, Fiers M, Stewart A, Hill RA, Sherlock RR (2011) Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 54:309–320. doi:10.1016/j.pedobi.2011.07.005

    Article  CAS  Google Scholar 

  • Argo WR (1998) Root medium chemical properties. HortTechnology 8:486–494

    Google Scholar 

  • Argo WR, Biernbaum AJ (1997) Lime, water source, and fertilizer nitrogen form affect medium pH and nitrogen accumulation and uptake. HortSci 32:71–74

    CAS  Google Scholar 

  • Beck DA, Johnson GR, Spolek GA (2011) Amending greenroof soil with biochar to affect runoff water quantity and quality. Environ Pollut 159:2111–2118

    Article  CAS  PubMed  Google Scholar 

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL (2010) Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158:2282–2287. doi:10.1016/j.envpol.2010.02.003

    Article  CAS  PubMed  Google Scholar 

  • Brewer CE, Schmidt-Rohr K, Satrio JA, Brown RC (2009) Characterization of biochar from fast pyrolysis and gasification systems. Environ Prog Sustainable Energy 28:386–396. doi:10.1002/ep.10378

    Article  CAS  Google Scholar 

  • Brockhoff SR, Christians NE, Killorn RJ et al (2010) Physical and mineral-nutrition properties of sand-based turf grass root zones amended with biochar. Agron J 102:1627–1631

    Article  Google Scholar 

  • Cao XD, Harris W (2010) Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour Technol 101:5222–5228

    Article  CAS  PubMed  Google Scholar 

  • Chan KY, Xu Z (2009) Biochar: nutrient properties and their enhancement. In: Lehmann J, Joseph S (eds) Biochar for environmental management science and technology. Edited Earthscan, London, pp 67–84

    Google Scholar 

  • Chun Y, Sheng G, Chiou CT, Xing B (2004) Compositions and sorptive properties of crop residue-derived chars. Environ Sci Technol 38:4649–4655

    Article  CAS  PubMed  Google Scholar 

  • Clough TJ, Condron LM, Kammann C, Müller C (2013) A review of biochar and soil nitrogen dynamics. Agronomy 3:275–293. doi:10.3390/agronomy3020275

    Article  CAS  Google Scholar 

  • DeLuca TH, MacKenzie DM, Gundale MJ (2009) Biochar effects on soil nutrient transformations. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Edited Earthscan, London, pp 251–270

    Google Scholar 

  • Dumroese RK, Heiskanen J, Englund K, Tervahauta A (2011) Pelleted biochar: chemical and physical properties show potential use as a substrate in container nurseries. Biomass Bioenerg 35:2018–2027. doi:10.1016/j.biombioe.2011.01.053

    Article  CAS  Google Scholar 

  • EN 13037 (2012) Soil improvers and growing media. Determination of pH

  • EN 13038 (2012) Soil improvers and growing media. Determination of electrical conductivity

  • EN 13039 (2011) Soil improvers and growing media. Determination of organic matter content and ash

  • EN 13041 (2012) Soil improvers and growing media. Determination of physical properties. Dry bulk density, air volume, water volume, shrinkage value and total pore space

  • EN 13654-1 (2001) Soil improvers and growing media. Determination of nitrogen. Modified Kjeldahl method

  • EN 13652 (2001) Soil improvers and growing media. Extraction of water soluble nutrients and elements

  • EN 16086-1 (2012) Soil improvers and growing media. Determination of plant response. Part 1: Pot growth test with Chinese cabbage

  • Fontana E, Hoeberechts J, Nicola S, Cros V, Palmegiano GB, Peiretti PG (2006) Nitrogen concentration and nitrate/ammonium ratio affect yield and change the oxalic acid concentration and fatty acid profile of purslane (Portulaca oleracea L.) grown in a soilless culture system. J Sci Food Agric 86:2417–2424

    Article  CAS  Google Scholar 

  • Gomez-Eyles JL, Sizmur T, Collins CD, Hodson ME (2011) Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements. Environ Pollut 159:616–622

    Article  CAS  PubMed  Google Scholar 

  • Graber ER, Harel YM, Kolton M, Cytryn E, Silber A, David DR, Tsechansky L, Borenshtein M, Elad Y (2010) Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 337:481–496. doi:10.1007/s11104-010-0544-6

    Article  CAS  Google Scholar 

  • Gundale MJ, DeLuca TH (2006) Temperature and source material influence ecological attributes of ponderosa pine and Douglas-fir charcoal. For Ecol Manag 231:86–93. doi:10.1016/j.foreco.2006.05.004

    Article  Google Scholar 

  • Handreck K, Black N (2007) Growing media for ornamental plants and turf. UNSW Press Ltd, Sydney

    Google Scholar 

  • Headlee WL, Brewer CE, Hall RB (2014) Biochar as a substitute for vermiculite in potting mix for hybrid poplar. Bioenergy Res 7:120–131. doi:10.1007/s12155-013-9355-y

    Article  CAS  Google Scholar 

  • Herlihy M (1972) Microbial and enzyme activity in peats. Acta Horticult 26:45–50

    Google Scholar 

  • ISO 13395 (1996) Water quality -- determination of nitrite nitrogen, nitrate nitrogen and the sum of both by flow analysis (CFA and FIA) and spectrometric detection

  • ISO 11732 (2005) Water quality -- determination of ammonium nitrogen -- method by flow analysis (CFA and FIA) and spectrometric detection

  • Kim YS, Yang SJ, Lim HJ, Kim T, Lee K, Park CR (2012) Effects of carbon dioxide and acidic carbon compounds on the analysis of Boehm titration curves. Carbon 50:1510–1516

    Article  CAS  Google Scholar 

  • Klinghoffer N, Castaldi MJ, Nzihou A (2011) Beneficial use of ash and char from biomass gasification. In: Proceedings of the 19th Annual North American Waste-to-Energy Conference NAWTEC19 May 16-18 Lancaster, Pennsylvania, USA

  • Kloss S, Zehetner F, Dellantonio A, Hamid R, Ottner F, Liedtke V, Schwanninger M, Gerzabek MH, Soja G (2012) Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. J Environ Qual 41:990–1000. doi:10.2134/jeq2011.0070

    Article  CAS  PubMed  Google Scholar 

  • Laird DA, Fleming P, Davis DD, Horton R, Wang B, Karlen DL (2010) Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158:443–449. doi:10.1016/j.geoderma.2010.05.013

    Article  CAS  Google Scholar 

  • Laird DA, Rogovska NP, Garcia-Perez M, Collins HP, Streubel JD, Smith M (2011) Pyrolysis and biochar – opportunities for distributed production and soil quality enhancement. In: Braun R (Eds) Sustainable alternative fuel feedstock opportunities, challenges and roadmaps for six U.S. regions. Proceedings of the Sustainable Feedstocks for Advanced Biofuels Workshop

  • Lang HJ, Elliot GC (1991) Influence of ammonium nitrate ratio and nitrogen concentration on nitrification activity in soil less potting media. J Am Soc Hortic Sci 116:642–645

    CAS  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management: an introduction. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Edited Earthscan, London, pp 1–12

    Google Scholar 

  • Maestrini B, Herrmann AM, Nannipieri P, Schmidt MWI, Abiven S (2014) Ryegrass-derived pyrogenic organic matter changes organic carbon and nitrogen mineralization in a temperate forest soil. Soil Biol Biochem 69:291–301

    Article  CAS  Google Scholar 

  • Marschner (2012) Marschner’s mineral nutrition of higher plants. In Marschner P (ed) Academic Press, London

  • McKendry P (2002a) Energy production from biomass (part 3): gasification technologies. Bioresour Technol 83:55–63. doi:10.1016/S0960-8524(01)00120-1

    Article  CAS  PubMed  Google Scholar 

  • McKendry P (2002b) Review paper. Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83:47–54. doi:10.1016/S0960-8524(01)00119-5

    Article  CAS  PubMed  Google Scholar 

  • Michel JC (2007) Physical properties of peat: a key factor in their use as growing media. Proceeding of International conference on peat and peatlands “Peat in horticulture and rehabilitation of mires after peat extraction: which issue for tomorrow?” Lamoura (F), 8-11 October 2007 pp 55-61

  • Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20:848–889

    Article  CAS  Google Scholar 

  • Nelissen V, Rütting T, Huygens D, Staelens J, Ruysschaert G et al (2012) Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil. Soil Biol Biochem 55:20–22

    Article  CAS  Google Scholar 

  • Niemiera AX, Wright RD (1987) Influence of temperature on nitrification in a pine bark medium. Hortic Sci 22:615–616

    Google Scholar 

  • Northup J (2013) Biochar as a replacement for perlite in greenhouse soilless substrates. Graduate Theses and Dissertations. Paper 13399. http://lib.dr.iastate.edu/etd/13399

  • Prommer J, Wanek W, Hofhansl F, Trojan D, Offre P et al (2014) Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial. PLoS ONE 9:e86388. doi:10.1371/journal.pone.0086388

    Article  PubMed Central  PubMed  Google Scholar 

  • Raviv M, Lieth JH (2008) Soilless culture: theory and practice. Elsevier B.V, Oxford

    Google Scholar 

  • Silber A (2007) Impact of solution-NH4 concentrations on soilless-grown plants: benefits and constraints. Acta Horticult 819:373–380

    Google Scholar 

  • Song Y, Zhang X, Ma B, Chang SX, Gong J (2014) Biochar addition affected the dynamics of ammonia oxidizers and nitrification in microcosms of a coastal alkaline soil. Biol Fertil Soils 50:321–332. doi:10.1007/s00374-013-0857-8

    Article  CAS  Google Scholar 

  • Spokas KA, Koskinen WC, Baker JM, Reicosky DC (2009) Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 77:574–581

    Article  CAS  PubMed  Google Scholar 

  • Taghizadeh-Toosi A, Clough TJ, Sherlock RR, Condron LM (2012) Biochar adsorbed ammonia is bioavailable. Plant Soil 350:57–69. doi:10.1007/s11104-011-0870-3

    Article  CAS  Google Scholar 

  • Tian Y, Sun X, Li S, Wang H, Wang L, Cao J, Zhang L (2012) Biochar made from green waste as peat substitute in growth media for Calathea rotundifola cv Fasciata. Sci Hortic 143:15–18. doi:10.1016/j.scienta.2012.05.018

    Article  Google Scholar 

  • Vaughn SF, Kenara JA, Thompsona AR, Petersonb SC (2013) Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates. Ind Crop Prod 51:437–443. doi:10.1016/j.indcrop.2013.10.010

    Article  CAS  Google Scholar 

  • Yao Y, Gao B, Zhang M, Inyang M, Zimmerman AR (2012) Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89:1467–1471

    Article  CAS  PubMed  Google Scholar 

  • Yaman S (2004) Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers Manag 45:651–671

    Article  CAS  Google Scholar 

  • Yuan J, Xu R, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102:3488–3497

    Article  CAS  PubMed  Google Scholar 

  • Yu XY, Ying GG, Kookana RS (2009) Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere 76:665–671

    Article  CAS  PubMed  Google Scholar 

  • Zaccheo P, Crippa L, Cattivello C (2013a) Liming power of different particle fractions of biochar. Acta Horticult 1034:363–367

    Google Scholar 

  • Zaccheo P, Crippa L, Cattivello C (2013b) Effect of controlled-release fertilizers on chemical parameters of two growing media during 12 months storage. Acta Horticult 1013:327–332

    Google Scholar 

  • Zhang H, Lin K, Wang H, Gan J (2010) Effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene. Environ Pollut 158:2821–2825

    Article  CAS  PubMed  Google Scholar 

  • Zhao I, Cao X, Masek O, Zimmerman A (2013) Heterogeneity of biochar properties as a function of feedstock source sand production temperatures. J Hazard Mater 256–257:1–9. doi:10.1016/j.jhazmat.2013.04.015

    PubMed  Google Scholar 

  • Zheljazkov VD, Warman PR (2002) Comparison of three digestion methods for the recovery of 17 plant essential nutrients and trace elements from six composts. Compos Sci Util 10:197–203. doi:10.1080/1065657X.2002.10702081

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mattia Sanna and Marcello Chiodini (Dipartimento di Scienze Agrarie e Ambientali, University of Milan) for their assistance with the statistical analysis and the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Zaccheo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bedussi, F., Zaccheo, P. & Crippa, L. Pattern of pore water nutrients in planted and non-planted soilless substrates as affected by the addition of biochars from wood gasification. Biol Fertil Soils 51, 625–635 (2015). https://doi.org/10.1007/s00374-015-1011-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-015-1011-6

Keywords

Navigation