Advertisement

Graphs and Combinatorics

, Volume 36, Issue 1, pp 139–151 | Cite as

The Number of Tournaments with the Minimum Number of Upsets

  • Ilhan HaciogluEmail author
  • Nuri Sendil
  • Burak Kurkcu
  • Carlos M. da Fonseca
Original Paper
  • 21 Downloads

Abstract

In this paper we provide a construction method which generates all tournament matrices with a prescribed score-list with minimum number of upsets. We set up a correspondence between a tournament matrix with minimum number of upsets and perfect matchings. We provide some upper bounds for the tournament matrices with minimum number of upsets by using bounds for the permanents of Ferrers matrices. Several examples and related problems are also discussed.

Keywords

Tournaments Upsets 

Mathematics Subject Classification

05C20 05C85 

Notes

Acknowledgements

We thank the referees for all the valuable comments which helped the presentation of this paper.

References

  1. 1.
    Alzer, H., da Fonseca, C.M.: New permanental bounds for Ferrers matrices. Linear Algebra Appl. 435(11), 2813–2827 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aspey, W.P., Blankenship, J.E.: Spiders & snails & statistical tales: Application of multivariate analyses to diverse ethological data. In: Hazlett, B. (ed.) Quantitative Methods in the Study of Animal Behavior, pp. 75–120. New York, Academic Press (1977)Google Scholar
  3. 3.
    Brown, D.E., Roy, S., Lundgren, J.R., Siewert, D.J.: Boolean rank of upset tournament matrices. Linear Algebra Appl. 436(9), 3239–3246 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Brualdi, R.A., Li, Q.: The interchange graph of tournaments with the same score vector, Progress in graph theory (Waterloo, Ont., 1982), 129-151, Academic Press, Toronto, ON (1984)Google Scholar
  5. 5.
    Brualdi, R.A., Li, Q.: Upsets in round robin tournaments. J. Comb. Theory Ser. B 35(1), 62–77 (1983)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Busch, A.H., Jacobson, M.S., Reid, K.B.: On a conjecture of Quintas and arc-traceability in upset tournaments. Discuss. Math. Graph Theory 25(3), 345–354 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Erdős, P., Moon, J.M.: On sets of consistent arcs in a tournament. Can. Math. Bull. 8, 269–271 (1965)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Factor, K.A.S., Kohler, R.M., Darby, J.M.: Local out-tournaments with upset tournament strong components. I. Full and equal \(\{0,1\}\)-matrix ranks, Ars Combin. 95, 3-17 (2010)Google Scholar
  9. 9.
    Factor, K.A.S., Kohler, R.M., Rupcich, F.: Local out-tournaments with upset tournament strong components. II. Existence of equal \(\{0,1\}\)-matrix ranks of less than \(n\), Congr. Numer. 186, 171-184 (2007)Google Scholar
  10. 10.
    Fulkerson, D.R.: Upsets in round robin tournaments. Can. J. Math. 17, 957–969 (1965)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Grabner, P.J., Tichy, R.F., Zimmermann, U.T.: Inequalities for the gamma function with applications to permanents. Discret. Math. 154(1–3), 53–62 (1996)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hacıoğlu, I., Kürkçü, B.: Construction of all tournament matrices with prescribed row sum vector. Discret. Appl. Math. 171, 147–152 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hacıoğlu, I., Michael, T.S., Özdemir, S.: Square roots of doubly regular tournament matrices. Electron. J. Linear Algebra 28, 79–82 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kannan, R., Tetali, P., Vempala, S.: Simple Markov-chain algorithms for generating bipartite graphs and tournaments. Random Struct. Algorithms 14, 293–308 (1999)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Landau, H.G.: On dominance relations and the structure of animal societies. III. The condition for a score structure. Bull. Math. Biophys. 15, 143–148 (1953)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lundgren, J.R., Siewert, D.J.: Upset tournaments with equal biclique cover and partition numbers. Congr. Numer. 158, 67–82 (2002)MathSciNetzbMATHGoogle Scholar
  17. 17.
    McShine, L.: Random sampling of labelled tournaments, Electron. J. Combin. 7, #R8 (2000)Google Scholar
  18. 18.
    Melcher, M., Reid, K.B.: Monochromatic sinks in nearly transitive arc-colored tournaments. Discret. Math. 310(20), 2697–2704 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Michael, T.S.: Tournaments, Handbook of Linear Algebra, Second Edition, Ed. Leslie Hogben, Chapman and Hall/CRC, Chapter \(5\) (2013)Google Scholar
  20. 20.
    Poet, J.L., Shader, B.L.: Score certificate numbers of upset tournaments. Discret. Appl. Math. 103(1–3), 177–189 (2000)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Poet, J.L., Shader, B.L.: Short score certificates for upset tournaments, Electron. J. Combin. 5, #R24 (1998)Google Scholar
  22. 22.
    Reid, K.B.: Tournaments, in The Handbook of Graph Theory (edited by J. Gross and J. Yellan), CRC Press, Boca Raton, 156-184 (2004)Google Scholar
  23. 23.
    Ryser, H.J.: Matrices of zeros and ones in combinatorial mathematics, Recent Advances. In: Theory, Matrix (ed.) Hans Schneider, pp. 103–124. U. Wisconsin Press, Madison (1964)Google Scholar
  24. 24.
    Shader, B.L.: Bipartide Graphs and Matrices, Handbook of Linear Algebra, Second Edition, Ed. Leslie Hogben, Chapman and Hall/CRC, Chapter \(41\), 685-697 (2013)Google Scholar
  25. 25.
    Shader, B.L.: On biclique partitions of complete graph. Discret. Math. 117(1–3), 197–213 (1993)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Spencer, J.: Optimally ranking unrankable tournaments. Period. Math. Hung. 11(2), 131–144 (1980)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2020

Authors and Affiliations

  • Ilhan Hacioglu
    • 1
    Email author
  • Nuri Sendil
    • 1
  • Burak Kurkcu
    • 2
  • Carlos M. da Fonseca
    • 3
  1. 1.College of Engineering and TechnologyAmerican University of the Middle EastKuwait CityKuwait
  2. 2.IstanbulTurkey
  3. 3.University of Primorska, FAMNITKoperSlovenia

Personalised recommendations