Graphs and Combinatorics

, Volume 35, Issue 6, pp 1673–1693 | Cite as

Cospectral Bipartite Graphs with the Same Degree Sequences but with Different Number of Large Cycles

  • Ali DehghanEmail author
  • Amir H. Banihashemi
Original Paper


Finding the multiplicity of cycles in bipartite graphs is a fundamental problem of interest in many fields including the analysis and design of low-density parity-check (LDPC) codes. Recently, Blake and Lin computed the number of shortest cycles (g-cycles, where g is the girth of the graph) in a bi-regular bipartite graph, in terms of the degree sequences and the spectrum (eigenvalues of the adjacency matrix) of the graph (Blake and Lin in IEEE Trans Inf Theory 64(10): 6526–6535, 2018). This result was subsequently extended in Dehghan and Banihashemi (IEEE Trans Inf Theory 65(6):3778–3789, 2019) to cycles of length \(g+2, \ldots , 2g-2\), in bi-regular bipartite graphs, as well as 4-cycles and 6-cycles in irregular and half-regular bipartite graphs, with \(g \ge 4\) and \(g \ge 6\), respectively. In this paper, we complement these positive results with negative results demonstrating that the information of the degree sequences and the spectrum of a bipartite graph is, in general, insufficient to count (a) the i-cycles, \(i \ge 2g\), in bi-regular graphs, (b) the i-cycles for any \(i > g\), regardless of the value of g, and g-cycles for \(g \ge 6\), in irregular graphs, and (c) the i-cycles for any \(i > g\), regardless of the value of g, and g-cycles for \(g \ge 8\), in half-regular graphs. To obtain these results, we construct counter-examples using the Godsil–McKay switching.


Cycle multiplicity Bipartite graphs Tanner graphs Graph spectrum Low-density parity-check (LDPC)  codes Bi-regular bipartite graphs Irregular bipartite graphs Half-regular bipartite graphs Girth Degree sequences of a graph Godsil McKay switching 



  1. 1.
    Abiad, A., Brouwer, A.E., Haemers, W.H.: Godsil–McKay switching and isomorphism. Electron. J. Linear Algebra 28, 4–11 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Asvadi, R., Banihashemi, A.H., Ahmadian-Attari, M.: Lowering the error floor of LDPC codes using cyclic liftings. IEEE Trans. Inf. Theory 57(4), 2213–2224 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Blake, I.F., Lin, S.: On short cycle enumeration in biregular bipartite graphs. IEEE Trans. Inf. Theory 64(10), 6526–6535 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Blázsik, Z.L., Cummings, J., Haemers, W.H.: Cospectral regular graphs with and without a perfect matching. Discrete Math. 338(3), 199–201 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. American Elsevier Publishing Co., Inc., New York (1976)CrossRefGoogle Scholar
  6. 6.
    Brouwer, A.E., Haemers, W.H.: Eigenvalues and perfect matchings. Linear Algebra Appl. 395, 155–162 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dehghan, A., Banihashemi, A.H.: On the Tanner graph cycle distribution of random LDPC, random protograph-based LDPC, and random quasi-cyclic LDPC code ensembles. IEEE Trans. Inf. Theory 64(6), 4438–4451 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dehghan, A., Banihashemi, A.H.: On computing the multiplicity of cycles in bipartite graphs using the degree distribution and the spectrum of the graph. IEEE Trans. Inf. Theory 65(6), 3778–3789 (2019)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gallager, R.G.: Low-Density Parity-Check Codes. MIT Press, Cambridge (1963)zbMATHGoogle Scholar
  10. 10.
    Godsil, C.D., McKay, B.D.: Constructing cospectral graphs. Aeq. Math. 25(2–3), 257–268 (1982)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Halford, T.R., Chugg, K.M.: An algorithm for counting short cycles in bipartite graphs. IEEE Trans. Inf. Theory 52(1), 287–292 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hashemi, Y., Banihashemi, A.H.: New characterization and efficient exhaustive search algorithm for leafless elementary trapping sets of variable-regular LDPC codes. IEEE Trans. Inf. Theory 62(12), 6713–6736 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hashemi, Y., Banihashemi, A.H.: Characterization of elementary trapping sets in irregular LDPC codes and the corresponding efficient exhaustive search algorithms. IEEE Trans. Inf. Theory 64(5), 3411–3430 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Howbert, J.: Count all cycles in simple undirected graph, version 1.2. Accessed 29 Aug 2011
  15. 15.
    Hu, X.-Y., Eleftheriou, E., Arnold, D.M.: Regular and irregular progressive edge-growth Tanner graphs. IEEE Trans. Inf. Theory 51(1), 386–398 (2005)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hui, A.M.W., Rodrigues, B.G.: Switched graphs of some strongly regular graphs related to the symplectic graph. Des. Codes Cryptogr. 86(1), 179–194 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Karimi, M., Banihashemi, A.H.: Efficient algorithm for finding dominant trapping sets of LDPC codes. IEEE Trans. Inf. Theory 58(11), 6942–6958 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Karimi, M., Banihashemi, A.H.: On the girth of quasi-cyclic protograph LDPC codes. IEEE Trans. Inf. Theory 59(7), 4542–4552 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Karimi, M., Banihashemi, A.H.: On characterization of elementary trapping sets of variable-regular LDPC codes. IEEE Trans. Inf. Theory 60(9), 5188–5203 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Karimi, M., Banihashemi, A.H.: Message-passing algorithms for counting short cycles in a graph. IEEE Trans. Commun. 61(2), 485–495 (2013)CrossRefGoogle Scholar
  21. 21.
    Kschischang, F.R., Frey, B.J., Loeliger, H.-A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47(2), 498–519 (2001)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Langberg, M., Vilenchik, D.: Constructing cospectral graphs via a new form of graph product. Linear Multilinear Algebra 66(9), 1838–1852 (2018)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Liu, M., Yuan, Y., You, L., Chen, Z.: Which cospectral graphs have same degree sequences. Discrete Math. 341(11), 2969–2976 (2018)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Lu, H.: Regular graphs, eigenvalues and regular factors. J. Graph Theory 69(4), 349–355 (2012)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Müller, H.: Hamiltonian circuits in chordal bipartite graphs. Discrete Math. 156(1–3), 291–298 (1996)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Munemasa, A.: Godsil–McKay switching and twisted Grassmann graphs. Des. Codes Cryptogr. 84(1–2), 173–179 (2017)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Omidi, G.R.: On integral graphs with few cycles. Graphs Combin. 25(6), 841–849 (2009)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Richardson, T.J., Urbanke, R.L.: The capacity of low-density parity-check codes under message-passing decoding. IEEE Trans. Inf. Theory 47(2), 599–618 (2001)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Saeedi, H., Banihashemi, A.H.: New sequences of capacity achieving LDPC code ensembles over the binary erasure channel. IEEE Trans. Inf. Theory 56(12), 6332–6346 (2010)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Stevanović, D.: Two spectral characterizations of regular, bipartite graphs with five eigenvalues. Linear Algebra Appl. 435(10), 2612–2625 (2011)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Tanner, R.M.: A recursive approach to low complexity codes. IEEE Trans. Inf. Theory 27(5), 533–547 (1981)MathSciNetCrossRefGoogle Scholar
  32. 32.
    van Dam, E.R., Haemers, W.H.: Which graphs are determined by their spectrum? Linear Algebra Appl. 373, 241–272 (2003)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Xiao, H., Banihashemi, A.H.: Error rate estimation of low-density parity-check codes on binary symmetric channels using cycle enumeration. IEEE Trans. Commun. 57(6), 1550–1555 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Systems and Computer Engineering DepartmentCarleton UniversityOttawaCanada

Personalised recommendations