Graphs and Combinatorics

, Volume 35, Issue 6, pp 1609–1617 | Cite as

Cayley Graphs Over Green \(^*\) Relations of Abundant Semigroups

  • Chunhua LiEmail author
  • Baogen Xu
  • Huawei Huang
Original Paper


In this paper, we first introduce the concept of Cayley graphs over Green \(^*\) relations of abundant semigroups by using Green \(^*\) relations. After obtaining some basic properties, we get some conditions for Cayley graphs over Green \(^*\) relations of abundant semigroups to be transmissible. Finally, we give necessary and sufficient conditions for a Cayley graph over Green \(^*\) relations of an abundant semigroup to be linear and complete, respectively.


Abundant semigroups Cayley graphs over Green \(^*\) relations Transmissible Linear graphs Complete graphs 

Mathematics Subject Classification

06F05 20M10 



The authors are very grateful to the referees for their valuable suggestions which lead to an improvement of this paper.

This work is supported by the National Science Foundation of China (Nos. 11261018, 11961026), the Natural Science Foundation of Jiangxi Province (Nos. 20181BAB201002, 20171BAB201009).


  1. 1.
    Fountain, J.B.: Abundant semigroups. Proc. Lond. Math. Soc. 44, 103–129 (1982)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Godsil, C., Royle, C.: Algebraic Graph Theory. Spring, London (2001)CrossRefGoogle Scholar
  3. 3.
    Kelarev, A.V.: Graph Algebras and Automata. Marcel Dekker, New York (2003)CrossRefGoogle Scholar
  4. 4.
    Kelarev, A.V.: Labelled Cayley graphs and minimal automata. Australas. J. Comb. 30, 95–101 (2004)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Kelarev, A., Ryan, J., Yearwood, J.: Cayley graphs as classifiers for data mining: the influence of asymmetries. Discrete Math. 309, 5360–5369 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Kelarev, A., Ras, C., Zhou, S.M.: Distance labellings of Cayley graphs of semigroups. Semigroup Forum 91, 611–624 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kelarev, A.V.: On Cayley graphs of inverse semigroups. Semigroup Forum 72, 411–418 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Khosravi, B.: Some properties of Cayley graphs of cancellative semigroups. Proc. Roman. Acad. Ser. A 17, 3–10 (2016)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Khosravi, B.: The endomorphism monoids and automorphism groups of Cayley graphs of semigroups. Semigroup Forum 95, 179–191 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Khosravi, B., Khosravi, B., Khosravi, B.: On the Cayley \({\cal{D}}\)-saturated property of semigroups. Semigroup Forum 91, 502–516 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Khosravi, B., Khosravi, B., Khosravi, B.: On color-automorphism vertex transitivity of semigroups. Eur. J. Comb. 40, 55–64 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Knauer, U.: Agebraic Graph Theory: Morphisms Monoids and Matrices. De Gruyter, Berlin (2011)CrossRefGoogle Scholar
  13. 13.
    Luo, Y., Hao, Y., Clarke, G.T.: On the Cayley graphs of completely simple semigroups. Semigroup Forum 82, 288–295 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Navges, H., Amir, A.: Graph operations on Cayley graphs of semigroups. Int. J. Appl. Math. Res. 3, 54–57 (2014)Google Scholar
  15. 15.
    Panma, S., Knauer, U., Arworn, S.: On transitive Cayley graphs of strong semilattices of right (left) groups. Discrete Math. 309, 5393–5403 (2009)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Praeger, C.E.: Finite normal edge-transitive Cayley graphs. Bull. Austral. Math. Soc. 60, 207–220 (1999)MathSciNetCrossRefGoogle Scholar
  17. 17.
    White, A.T.: Graphs Groups and Surfaces. Elsevier, Amsterdam (2001)zbMATHGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of ScienceEast China Jiaotong UniversityNanchangChina
  2. 2.School of Mathematics and Computer ScienceGuizhou Normal UniversityGuiyangChina

Personalised recommendations