Advertisement

Some Meta-Cayley Graphs on Dihedral Groups

  • I. AllieEmail author
  • E. Mwambene
Original Paper
  • 13 Downloads

Abstract

In this paper, we define meta-Cayley graphs on dihedral groups. We fully determine the automorphism groups of the constructed graphs in question. Further, we prove that some of the graphs that we have constructed do not admit subgroups which act regularly on their vertex set; thus proving that they cannot be represented as Cayley graphs on groups.

Keywords

Vertex-transitive graphs Cayley graphs Groupoid graphs Non-Cayley graphs Meta-Cayley graphs 

Mathematics Subject Classification

05E18 05C25 

Notes

References

  1. 1.
    Alspach, B., Parsons, T.D.: A construction for vertex transitive graphs. Can. J. Math. 34, 307–318 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cheng, H., Ghasemi, M., Qiao, S.: Tetravalent vertex-transitive graphs of order twice a prime square. Graphs Comb. 32, 1763–1771 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Frucht, R., Graver, J.E., Watkins, M.E.: The groups of the generalized Petersen graphs. Math. Proc. Camb. Philos. Soc. 70, 211–218 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Gauyacq, G.: On quasi-Cayley graphs. Discrete Appl. Math. 77, 43–58 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Godsil, C.D.: More odd graph theory. Discrete Math. 32, 205–217 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ivanov, A.A., Praeger, C.E.: Problem session at ALCOM-91. Eur. J. Comb. 15, 105–112 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kantor, W.M.: Primitive permutation groups of odd degree with an application to projective planes. J. Algebra 106, 15–45 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Marušič, D.: Cayley properties of vertex symmetric graphs. Ars Comb. 16B, 297–302 (1983)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Marušič, D., Scapellato, R.: Characterising vertex-transitive $pq$-graphs with an imprimitive automorphism group. J. Graph Theory 16, 375–387 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Marušič, D., Scapellato, R.: Imprimitive representations of $SL(2,2^k)$. J. Comb. Theory (B) 58, 46–57 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Miller, G.A.: Automorphisms of the dihedral groups. Proc. Natl. Acad. Sci. USA 28(9), 368–371 (1942)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Mwambene, E.: Representing Graphs on Groupoids: Symmetry and Form. PhD Thesis, University of Vienna (2001)Google Scholar
  13. 13.
    Mwambene, E.: Representing vertex-transitive graphs on groupoids. Quaest. Math. 29(3), 279–284 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Mwambene, E.: Cayley graphs on left quasi-groups and groupoids representing k-dimensional generalised Petersen graphs. Discrete Math. 309, 2544–2547 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Mwambene, E.: On non-Cayley vertex-transitive graphs and the meta-Cayley graphs. Quaest. Math. 34(4), 425–431 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Praeger, C.E., Xu, M.Y.: Vertex-transitive graphs of order a product of two distinct primes. J. Comb. Theory (B) 59, 245–266 (1993)CrossRefzbMATHGoogle Scholar
  17. 17.
    Sabidussi, G.: On a class of fixed-point-free graphs. Proc. Am. Math. Soc. 9(5), 800–804 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Watkins, M.E.: Vertex-transitive graphs that are not Cayley graphs. In: Hahn, G., et al. (eds.) Cycles and Rays, pp. 243–256. Kluwer, Alphen aan den Rijn (1990)CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics and Applied MathematicsUniversity of the Western CapeBellvilleSouth Africa

Personalised recommendations