Graphs and Combinatorics

, Volume 35, Issue 6, pp 1659–1671 | Cite as

Complete Graph-Tree Planar Ramsey Numbers

  • Yaojun Chen
  • Xiaolan HuEmail author
Original Paper


For two given graphs \(G_1\) and \(G_2\), the planar Ramsey number \(PR( G_1,G_2)\) is the smallest integer N such that every planar graph G on N vertices either contains a copy of \(G_1\) or its complement contains a copy of \(G_2\). In this paper, we determine all planar Ramsey numbers for the complete graphs versus trees.


Planar Ramsey numbers Complete graphs Trees 



  1. 1.
    Bielak, H., Gorgol, I.: The planar Ramsey number for \(C_4\) and \(K_5\) is 13. Discrete Math. 236, 43–51 (2001)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Brinkmann, G., McKay, B.D.: Construction of planar triangulations with minimum degree 5. Discrete Math. 301, 147–163 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Burr, S., Erdős, P., Faudree, R.J., Rousseau, C.C., Schelp, R.H.: Some complete bipartite graph-tree Ramsey numbers. Ann. Discrete Math. 41, 79–89 (1988)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chartrand, G., Kaugars, A., Lick, D.R.: Critically \(n\)-connected graphs. Proc. Am. Math. Soc. 32, 63–68 (1972)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Chen, Y.J., Cheng, T.C.E., Zhang, Y.Q., Zhou, G.F.: The planar Ramsey number \(PR(C_4, K_8)\). Discrete Appl. Math. 171, 28–34 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chen, Y.J., Miao, Z.K., Zhou, G.F.: All quadrilateral-wheel planar Ramsey numbers. Graphs Combin. 33, 335–346 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chvátal, V.: Tree-complete graph Ramsey numbers. J. Graph Theory 1, 93 (1977)MathSciNetCrossRefGoogle Scholar
  8. 8.
  9. 9.
    Dudek, A., Ruciński, A.: Planar Ramsey numbers for small graphs. Congres. Numer. 176, 201–220 (2005)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Gorgol, I., Ruciński, A.: Planar Ramsey numbers for cycles. Discrete Math. 308, 4389–4395 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Graham, R.L., Rothschild, B.L., Spencer, J.H.: Ramsey Theory, 2nd edn. Wiley, New York (1990)zbMATHGoogle Scholar
  12. 12.
    Grümbaum, B.: Grötzsch’s theorem on 3-colorings. Mich. Math. J. 10, 303–310 (1963)CrossRefGoogle Scholar
  13. 13.
    Hu, X.L., Zhang, Y.Q.: Double-star-like trees in the complement of a planar graph. J. Nanjing Univ. Math. Biquart. 32, 58–73 (2015)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Hu, X.L., Zhang, Y.Q., Zhang, Y.B.: Quadrilateral-tree planar Ramsey numbers. Bull. Aust. Math. Soc. 97, 194–199 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kuratowski, C.: Sur le probléme des courbes gauches en topologie. Fundam. Math. 15, 271–283 (1930)CrossRefGoogle Scholar
  16. 16.
    Steinberg, R., Tovey, C.A.: Planar Ramsey numbers. J. Combin. Theory, Ser. B 59, 288–296 (1993)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Sun, Y.Q., Yang, Y.S., Lin, X.H., Qiao, J.: The planar Ramsey number \(PR(K_4-e, K_5)\). Discrete Math. 307, 137–142 (2007)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Sun, Y.Q., Yang, Y.S., Lin, X.H., Song, Y.N.: The planar Ramsey number \(PR(C_4, K_7)\). Discrete Math. 308, 5841–5848 (2008)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Walker, K.: The analog of Ramsey numbers for planar graphs. Bull. Lond. Math. Soc. 1, 187–190 (1969)CrossRefGoogle Scholar
  20. 20.
    Whitney, H.: Congruent graphs and the connectivity of graphs. Amer. J. Math. 54, 150–168 (1932)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Zhang, X.M., Chen, Y.J., Cheng, T.C.E.: Polarity graphs and Ramsey numbers for \(C_4\) versus stars. Discrete Math. 340, 655–660 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Zhang, X.M., Chen, Y.J., Cheng, T.C.E.: Some values of Ramsey numbers for \(C_4\) versus stars. Finite Fields Appl. 45, 73–85 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Zhang, Y.B., Zhou, G.F., Chen, Y.J.: All complete graph-wheel planar Ramsey numbers. Graphs Combin. 31, 2459–2465 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zhou, G.F., Chen, Y.J., Miao, Z.K., Pirzada, S.: A note on planar Ramsey numbers for a triangle versus wheels. Discret. Math. Theor. Comput. Sci. 14, 255–260 (2012)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsNanjing UniversityNanjingPeople’s Republic of China
  2. 2.School of Mathematics and StatisticsCentral China Normal UniversityWuhanPeople’s Republic of China

Personalised recommendations