Advertisement

Graphs and Combinatorics

, Volume 35, Issue 6, pp 1293–1304 | Cite as

Complex Hadamard Matrices Attached to a 3-Class Nonsymmetric Association Scheme

  • Takuya Ikuta
  • Akihiro MunemasaEmail author
Original Paper
  • 59 Downloads

Abstract

In this paper we classify complex Hadamard matrices contained in the Bose–Mesner algebra of 3-class nonsymmetric association schemes. As a consequence of ourclassification, we have two infinite families and some small examples of complex Hadamard matrices contained in the Bose–Mesner algebra of a self-dual fission of a complete multipartite graph.

Keywords

Association scheme Complex Hadamard matrix 

Mathematics Subject Classification

05E30 05B30 

Notes

Acknowledgements

This work was supported by JSPS KAKENHI Grant number 17K05155.

References

  1. 1.
    Bannai, E., Ito, T.: Algebraic Combinatorics I: Association Schemes. Benjamin/Cummings, Menlo Park (1984)zbMATHGoogle Scholar
  2. 2.
    Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-Regular Graphs. Springer, Berlin (1989)CrossRefGoogle Scholar
  4. 4.
    Chan, A., Godsil, C.: Type-II matrices and combinatorial structures. Combinatorica 30, 1–24 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hanaki, A.: Classification of Association Schemes with Small Vertices. http://math.shinshu-u.ac.jp/~hanaki/as/
  6. 6.
    Hanaki, A., Miyamoto, I.: Classification of association schemes with \(16\) and \(17\) vertices. Kyushu J. Math. 52(2), 383–395 (1998)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hanaki, A., Miyamoto, I.: Classification of association schemes with \(18\) and \(19\) vertices. Korean J. Comput. Appl. Math. 5(3), 543–551 (1998)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Ikuta, T., Munemasa, A.: Butson-type complex Hadamard matrices and association schemes on Galois rings of characteristic \(4\). Spec. Matrices 6(1), 1–10 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ito, T., Munemasa, A., Yamada, M.: Amorphous association schemes over the Galois rings of characteristic \(4\). Eur. J. Combin. 12, 513–526 (1991)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Jørgensen, L.K., Jones, G.A., Klin, M.H., Song, S.Y.: Normally regular digraphs, association schemes and related combinatorial structures. Sém. Lothar. Combin. 71, 1–39 (2014). Article B71cMathSciNetzbMATHGoogle Scholar
  11. 11.
    Jørgensen, L.K.: Algorithmic Approach to Non-symmetric 3-Cass Association Schemes, Algorithmic Algebraic Combinatorics and Gröbner Bases, pp. 251–268. Springer, Berlin (2009)Google Scholar
  12. 12.
    Kharaghani, H.: New class of weighing matrices. Ars Combin. 19, 69–72 (1985)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Munemasa, A., Watatani, Y.: Paires orthogonales de sous-algèbres involutives. C. R. Acad. Sci. Paris Sér. I 314, 329–331 (1992)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Song, S.Y.: Class \(3\) association schemes whose symmetrizations have two classes. J. Combin. Theory Ser. A 70, 1–29 (1995)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Szöllősi, F.: Construction, Classification and Parametrization of Complex Hadamard Matrices. Ph.D Thesis, Central European University, Budapest (2012)Google Scholar
  16. 16.
    Wallis, W.D.: On a problem of K. A. Bush concerning Hadamard matrices. Bull. Austral. Math. Soc. 6, 321–326 (1972)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Kobe Gakuin UniversityKobeJapan
  2. 2.Tohoku UniversitySendaiJapan

Personalised recommendations