Advertisement

Graphs and Combinatorics

, Volume 35, Issue 3, pp 787–803 | Cite as

On the (Signless) Laplacian Permanental Polynomials of Graphs

  • Shunyi LiuEmail author
Original Paper
  • 43 Downloads

Abstract

Let G be a graph, and let L(G) and Q(G) denote respectively the Laplacian matrix and the signless Laplacian matrix of G. The Laplacian (respectively, signless Laplacian) permanental polynomial of G is defined as the permanent of the characteristic matrix of L(G) (respectively, Q(G)). In this paper, we give combinatorial expressions for the first five coefficients of the (signless) Laplacian permanental polynomial. The characterizing properties of the (signless) Laplacian permanental polynomial are investigated and some graphs determined by the (signless) Laplacian permanental polynomial are presented. Furthermore, we compute the (signless) Laplacian permanental polynomials for all graphs on at most 10 vertices, and count the number of such graphs for which there is another graph with the same (signless) Laplacian permanental polynomial.

Keywords

(Signless) Laplacian permanental polynomial Copermanental Coefficient 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11501050) and the Fundamental Research Funds for the Central Universities CHD (Grant Nos. 300102129109, 300102128201, 300102128104).

References

  1. 1.
    Botti, P., Merris, R., Vega, C.: Laplacian permanents of trees. SIAM J. Discrete Math. 5, 460–466 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Brualdi, R.A., Goldwasser, J.L.: Permanent of the Laplacian matrix of trees and bipartite graphs. Discrete Math. 48, 1–21 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cash, G.G.: Permanental polynomials of smaller fullerenes. J. Chem. Inf. Comput. Sci. 40, 1207–1209 (2000)CrossRefGoogle Scholar
  4. 4.
    Cash, G.G., Gutman, I.: The Laplacian permanental polynomial: formulas and algorithms. MATCH Commun. Math. Comput. Chem. 51, 129–136 (2004)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Faria, I.: Permanental roots and the star degree of a graph. Linear Algebra Appl. 64, 255–265 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Faria, I.: Multiplicity of integer roots of polynomials of graphs. Linear Algebra Appl. 229, 15–35 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Geng, X., Hu, X., Li, S.: Further results on permanental bounds for the Laplacian matrix of trees. Linear Multilinear Algebra 58, 571–587 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Geng, X., Hu, S., Li, S.: Permanental bounds of the Laplacian matrix of trees with given domination number. Graph Combin. 31, 1423–1436 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Godsil, C.D.: Algebraic Combinatorics. Chapman and Hall, New York (1993)zbMATHGoogle Scholar
  10. 10.
    Goldwasser, J.L.: Permanent of the Laplacian matrix of trees with a given matching. Discrete Math. 61, 197–212 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gutman, I.: Relation between the Laplacian and the ordinary characteristic polynomial. MATCH Commun. Math. Comput. Chem. 47, 133–140 (2003)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Haemers, W.H., Spence, E.: Enumeration of cospectral graphs. Eur. J. Combin. 25, 199–211 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ishaq, M., Merris, R., Zaslawsky, E.: Problems concerning permanental polynomials of graphs. Linear Multilinear Algebra 15, 345–350 (1984)CrossRefGoogle Scholar
  14. 14.
    Kasum, D., Trinajstić, N., Gutman, I.: Chemical graph theory. III. On permanental polynomial. Croat. Chem. Acta 54, 321–328 (1981)Google Scholar
  15. 15.
    Li, S., Li, Y., Zhang, X.: Edge-grafting theorems on permanents of the Laplacian matrices of graphs and their applications. Electron. J. Linear Algebra 26, 28–48 (2013)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Li, W., Liu, S., Wu, T., Zhang, H.: On the permanental polynomials of graphs. In: Shi, Y., Dehmer, M., Li, X., Gutman, I. (eds.) Graph Polynomials, pp. 101–122. CRC Press, Boca Raton (2017)CrossRefGoogle Scholar
  17. 17.
    Li, S., Zhang, L.: Permanental bounds for the signless Laplacian matrix of bipartite graphs and unicyclic graphs. Linear Multilinear Algebra 59, 145–158 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Li, S., Zhang, L.: Permanental bounds for the signless Laplacian matrix of a unicyclic graph with diameter \(d\). Graphs Combin. 28, 531–546 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Liu, S., Zhang, H.: On the characterizing properties of the permanental polynomials of graphs. Linear Algebra Appl. 438, 157–172 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Liu, X., Wu, T.: Computing the permanental polynomials of graphs. Appl. Math. Comput. 304, 103–113 (2017)MathSciNetzbMATHGoogle Scholar
  21. 21.
    McKay, B.D., Piperno, A.: Practical graph isomorphism. II. J. Symbolic Comput. 60, 94–112 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Merris, R.: The Laplacian permanental polynomial for trees. Czechslovak Math. J. 32, 397–403 (1982)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Merris, R., Rebman, K.R., Watkins, W.: Permanental polynomials of graphs. Linear Algebra Appl. 38, 273–288 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    de Mier, A., Noy, M.: Tutte uniqueness of line graphs. Discrete Math. 301, 57–65 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Tong, H., Liang, H., Bai, F.: Permanental polynomials of the larger fullerenes. MATCH Commun. Math. Comput. Chem. 56, 141–152 (2006)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput. Sci. 8, 189–201 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Vrba, A.: Principal subpermanents of the Laplacian matrix. Linear Multilinear Algebra 19, 335–346 (1986)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of ScienceChang’an UniversityXi’anPeople’s Republic of China

Personalised recommendations