Advertisement

Laguerre Voronoi Diagram as a Model for Generating the Tessellation Patterns on the Sphere

  • Supanut Chaidee
  • Kokichi Sugihara
Original Paper
  • 4 Downloads

Abstract

We propose a model for generating tessellation patterns on the sphere using the spherical Laguerre Voronoi diagram which satisfies the real-world assumptions. The generator pushing model is presented to generate the tessellation dynamically. The simulations were done for the different distribution of spherical circles on the sphere, and the results show the tendency of the distribution of resulting spherical circles.

Keywords

Spherical Laguerre Voronoi diagram Spherical tessellation Pattern formations 

Notes

Acknowledgements

This research is supported by Chiang Mai University, Thailand.

References

  1. 1.
    Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, vol. 501. Wiley, Amsterdam (2009)zbMATHGoogle Scholar
  2. 2.
    Aurenhammer, F., Klein, R., Lee, D.T.: Voronoi Diagrams and Delaunay Triangulations. World Scientific Publishing Co Inc, Singapore (2013)CrossRefzbMATHGoogle Scholar
  3. 3.
    Mach, P., Koehl, P.: Capturing protein sequencestructure specificity using computational sequence design. Protein. Struct. Funct. Bioinf. 81(9), 1556–1570 (2013)CrossRefGoogle Scholar
  4. 4.
    Telley, H., Liebling, T.M., Mocellin, A.: The Laguerre model of grain growth in two dimensions I. Cellular structures viewed as dynamical Laguerre tessellations. Philos. Magn. B 73(3), 395–408 (1996)CrossRefGoogle Scholar
  5. 5.
    Telley, H., Liebling, T.M., Mocellin, A.: The Laguerre model of grain growth in two dimensions II. Examples of coarsening simulations. Philos. Magn. B 73(3), 409–427 (1996)CrossRefGoogle Scholar
  6. 6.
    Aurenhammer, F.: Power diagram: properties, algorithms, and applications. SIAM J. Comput. 16, 78–96 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Imai, H., Iri, M., Murota, K.: Voronoi diagram in the Laguerre geometry and its applications. SIAM J. Comput. 14, 93–105 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Sugihara, K.: Three-dimensional convex hull as a fruitful source of diagrams. Theor. Comput. Sci. 235(2), 325–337 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chaidee, S., Sugihara, K.: Recognition of the spherical Laguerre Voronoi diagram. arXiv:1705.03911 (2017)
  10. 10.
    Chaidee, S., Sugihara, K.: Fitting spherical laguerre voronoi diagrams to real world tessellations using planar photographic images. In: Akiyama, J. (ed.) Discrete and Computational Geometry and Graphs (LNCS 9943), pp. 73–84. Springer, Berlin (2016)CrossRefGoogle Scholar
  11. 11.
    Chaidee, S., Sugihara, K.: Spherical Laguerre Voronoi diagram approximation to tessellations without generators, graphical models.  https://doi.org/10.1016/j.gmod.2017.11.002 (2017)
  12. 12.
    Pushpakumara, D.K.N.G.: Foral and fruit morphology and phenology of Artocarpus heterophyllus Lam. (Moraceae). Sri. Lankan J. Agric. Sci. 43, 82–196 (2006)Google Scholar
  13. 13.
    Underhill, S.J.R., Critchley, C.: The physiology and anatomy of lychee (Litchi chinensis Sonn.) pericarp during fruit development. J. Horticult. Sci. 67(4), 437–444 (1992)CrossRefGoogle Scholar
  14. 14.
    Roth, I.: Fruits of angiosperms-Encyclopedia of Plant Anatomy. Gebr. Borntraeger (1977)Google Scholar
  15. 15.
    Reeve, R.M.: Fruit histogenesis in Rubus strigosus. I. Outer epidermis, parenchyma, and receptacle. Am. J. Bot. 41(2), 152–160 (1954)CrossRefGoogle Scholar
  16. 16.
    Sugihara, K.: Laguerre Voronoi diagram on the sphere. J. Geom. Graph. 6(1), 69–81 (2002)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Chaidee, S., Sugihara, K.: Approximation of fruit skin patterns using spherical Voronoi diagrams. Pattern Anal. Appl. 20(3), 783–795 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Deserno, M.: How to generate equidistributed points on the surface of a sphere. P.-If Polymerforshung (Ed.) (2004)Google Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center of Excellence in Mathematics and Applied Mathematics, Department of Mathematics, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  2. 2.Meiji Institute for Advanced Study of Mathematical SciencesMeiji UniversityNakanokuJapan

Personalised recommendations