Advertisement

Graphs and Combinatorics

, Volume 35, Issue 1, pp 249–259 | Cite as

Edge-Primitive Graphs of Prime Power Order

  • Jiangmin Pan
  • Zhaohong HuangEmail author
  • Cixuan Wu
Original Paper
  • 21 Downloads

Abstract

A graph is called edge-primitive if its automorphism group acts primitively on its edge-set. In this paper, edge-primitive graphs of prime power order are determined.

Keywords

Edge primitive graph Primitive permutation group O’Nan–Scott type 

Mathematics Subject Classification

20B15 20B30 05C25 

Notes

Acknowledgements

The authors are very grateful to the referees for their valuable comments.

References

  1. 1.
    Cameron, P.J.: Finite permutation groups and finite simple groups. Bull. Lond. Math. Soc. 13, 1–22 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups. Oxford University Press, London (1985)zbMATHGoogle Scholar
  3. 3.
    Dixon, J.D., Mortimer, B.: Permutation Groups. Springer, New York (1996)CrossRefzbMATHGoogle Scholar
  4. 4.
    Giudici, M., Li, C.H.: On finite edge-primitive and edge-quasiprimitive graphs. J. Comb. Theory Ser. B 100, 275–298 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Guo, S.T., Feng, Y.Q., Li, C.H.: Edge-primitive tetravalent graphs. J. Comb. Theory Ser. B 112, 124–137 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Guo, S.T., Feng, Y.Q., Li, C.H.: The finite edge-primitive pentavalent graphs. J. Algebr. Comb. 38, 491–497 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Guralnick, R.M.: Subgroups of prime power index in a simple group. J. Algebra 225, 304–311 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Huppert, B.: Endliche Gruppen I. Springer, Berlin (1967)CrossRefzbMATHGoogle Scholar
  9. 9.
    Li, C.H., Praeger, C.E., Venkatesh, A., Zhou, S.M.: Finite locally-quasiprimitive graphs. Discrete Math. 246, 197–218 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Li, C.H.: The finite primitive permutation groups containing an abelian regular subgroup. Proc. Lond. Math. Soc. 87, 725–748 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Li, C.H., Lou, B.G., Pan, J.M.: Finite locally primitive abelian Cayley graphs. Sci. China 54(4), 854–945 (2011)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Li, C.H., Zhang, H.: The finite primitive groups with soluble stabilizers, and the edge-primitive s-arc transitive graphs. Proc. Lond. Math. Soc. 103, 441–472 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Li, C.H., Ma, L.: Locally primitive graphs and bidirect producs of graphs. J. Aust. Math. Soc. 91(2), 231–242 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Pan, J.M., Wu, C.X., Yin, F.G.: Finite edge-primitive graphs of prime valency. Eur. J. Comb. 73, 61–71 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Pan, J. M., Wu, C. X., Yin, F. G.: Edge-primitive Cayley graphs on abelian and dihedral groups. Discrete Math. (in press)Google Scholar
  16. 16.
    Praeger, C.E.: Primitive permutation groups with a doubly transitive subconstituent. J. Aust. Math. Soc. Ser. A 45, 66–77 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Praeger, C.E.: The inclusion problem for finite primitive permutation groups. Proc. Lond. Math. Soc 60(3), 68–88 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Praeger, C.E.: Finite transitive permutation groups and vertex-transitive graphs. In: Hahn, G., Sabidussi, G. (eds.) Graph Symmetry: Algebraic Methods and Applications. NATO Advanced Science Institute Series C 497, pp. 277–318. Klumer, Dordrecht (1997)CrossRefGoogle Scholar
  19. 19.
    Pablo, S.: Finite primitive groups and edge-transitive hypergraphs. J. Algebr. Comb. 43(3), 715–734 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Weiss, R.M.: Kantenprimitive Graphen vom Grad drei. J. Comb. Theory Ser. B 15, 269–288 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Wu, C. X., Pan, J. M.: Finite hexavalant edge-primitive graphs (submitted)Google Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Statistics and MathematicsYunnan University of Finance and EconomicsKunmingPeople’s Republic of China
  2. 2.School of Mathematics and Statistics ScienceLudong UniversityYantaiPeople’s Republic of China

Personalised recommendations