Advertisement

Graphs and Combinatorics

, Volume 35, Issue 1, pp 239–248 | Cite as

Cut-Colorings in Coloring Graphs

  • Prateek Bhakta
  • Benjamin Brett Buckner
  • Lauren Farquhar
  • Vikram Kamat
  • Sara Krehbiel
  • Heather M. RussellEmail author
Original Paper
  • 51 Downloads

Abstract

This paper studies the connectivity and biconnectivity of coloring graphs. For \(k\in \mathbb {N}\), the k-coloring graph of a base graph G has vertex set consisting of the proper k-colorings of G and edge set consisting of the pairs of k-colorings that differ on a single vertex. A base graph whose k-coloring graph is connected is said to be k-mixing; it is possible to transition between any two k-colorings in a k-mixing graph via a sequence of single vertex recolorings, where each intermediate step is also a proper k-coloring. A natural extension of connectedness is biconnectedness. If a base graph has a coloring graph that is not biconnected, then there exists a proper k-coloring that would disconnect the coloring graph if removed. We call such a coloring a k-cut coloring. We prove that no base graph that is 3-mixing can have a 3-cut coloring, but for any \(k\ge 4\) there exists a base graph that is k-mixing and has a k-cut coloring.

Keywords

Graph coloring Reconfiguration Cut-coloring 

Notes

Acknowledgements

The authors acknowledge University of Richmond for continued support of this work.

References

  1. 1.
    Beier, J., Fierson, J., Haas, R., Russell, H.M., Shavo, K.: Classifying coloring graphs. Discrete Math. 339(8), 2100–2112 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cereceda, L., van den Heuvel, J., Johnson, M.: Connectedness of the graph of vertex-colourings. Discrete Math. 308(5), 913–919 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cereceda, L., van den Heuvel, J., Johnson, M.: Mixing 3-colourings in bipartite graphs. Eur. J. Comb. 30(7), 1593–1606 (2009).  https://doi.org/10.1016/j.ejc.2009.03.011 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-colorings. J. Graph Theory 67(1), 69–82 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Choo, K., MacGillivray, G.: Gray code numbers for graphs. Ars Math. Contemp. 4(1), 125–139 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dyer, M., Flaxman, A.D., Frieze, A.M., Vigoda, E.: Randomly coloring sparse random graphs with fewer colors than the maximum degree. Random Struct. Algorithms 29(4), 450–465 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Haddadan, A., Ito, T., Mouawad, A.E., Nishimura, N., Ono, H., Suzuki, A., Tebbal, Y.: The complexity of dominating set reconfiguration. Theor. Comput. Sci. 651, 37–49 (2016).  https://doi.org/10.1016/j.tcs.2016.08.016 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara, R., Uno, Y.: On the complexity of reconfiguration problems. Theor. Comput. Sci. 412(12–14), 1054–1065 (2011).  https://doi.org/10.1016/j.tcs.2010.12.005 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Jerrum, M.: A very simple algorithm for estimating the number of k-colorings of a low-degree graph. Random Struct. Algorithms 7(2), 157–165 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Luby, M., Randall, D., Sinclair, A.J.: Markov chain algorithms for planar lattice structures. SIAM J. Comput. 31, 167–192 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Molloy, M.: The glauber dynamics on colorings of a graph with high girth and maximum degree. SIAM J. Comput. 33(3), 721–737 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Vigoda, E.: Improved bounds for sampling colorings. J. Math. Phys. 41(3), 1555–1569 (2000)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Prateek Bhakta
    • 1
  • Benjamin Brett Buckner
    • 2
  • Lauren Farquhar
    • 3
  • Vikram Kamat
    • 4
  • Sara Krehbiel
    • 1
  • Heather M. Russell
    • 1
    Email author
  1. 1.University of RichmondRichmondUSA
  2. 2.Rensselaer Polytechnic InstituteTroyUSA
  3. 3.University of Colorado BoulderBoulderUSA
  4. 4.Villanova UniversityVillanovaUSA

Personalised recommendations