Graphs and Combinatorics

, Volume 35, Issue 1, pp 119–140 | Cite as

Every Cubic Bipartite Graph has a Prime Labeling Except \(K_{3,3}\)

  • J. Z. SchroederEmail author
Original Paper


A graph G is prime if the vertices can be distinctly labeled with the integers \(1,2, \ldots ,|V(G)|\) so that adjacent vertices have relatively prime labels. We show that every cubic bipartite graph is prime except \(K_{3,3}\), which implies a number of other results. We also provide evidence to support a conjectured classification for the primality of 2-regular graphs.


Prime labeling Bipartite graph Regular graph 

Mathematics Subject Classification


Supplementary material

373_2018_1980_MOESM1_ESM.pdf (81 kb)
Supplementary material 1 (pdf 81 KB)


  1. 1.
    Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, New York (2008)CrossRefzbMATHGoogle Scholar
  2. 2.
    Borosh, I., Hensley, D., Hobbs, A.M.: Vertex prime graphs and the Jacobsthal function. Congr. Numer. 127, 193–222 (1997)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Deretsky, T., Lee, S.-M., Mitchem, J.: On vertex prime labelings of graphs, Graph Theory, Combinatorics, and Applications, Vol. 1 (Kalamazoo, MI, 1988), 359–369, Wiley, New York (1991)Google Scholar
  4. 4.
    Gallian, J.A.: A dynamic survey of graph labeling. Electr. J. Combin. #DS6 (2015)Google Scholar
  5. 5.
    Ghorbani, E., Kamali, S.: Prime labeling of ladders (2017). arXiv:1610.08849
  6. 6.
    Haque, K.M.M., Xiaohui, L., Yuansheng, Y., Pingzhong, Z.: Prime labeling on Knödel graphs \(W_{3, n}\). ARS Combin. 109, 113–128 (2013)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Haxell, P., Pikhurko, O., Taraz, A.: Primality of trees. J. Combin. 2, 481–500 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences. Accessed 24 Mar 2017
  9. 9.
    Pikhurko, O.: Trees are almost prime. Discr. Math. 307, 1455–1462 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Pikhurko, O.: Every tree with at most 34 vertices is prime. Util. Math. 62, 185–190 (2002)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Prajapati, U.M., Gajjar, S.J.: Prime labeling of generalized Petersen graph. Int. J. Math. Soft Comp. 5, 65–71 (2015)CrossRefzbMATHGoogle Scholar
  12. 12.
    Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Illinois J. Math. 6, 64–94 (1962)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Schluchter, S.A., Schroeder, J.Z.: Prime labelings of generalized Peterson graphs. Involve 10, 109–124 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Schluchter, S.A., Wilson, T.W.: Prime labelings of bipartite generalized Petersen graphs and other prime cubic bipartite graphs. Congr. Numer. 226, 227–241 (2016)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Schroeder, J.Z.: A lower bound on the number of rough numbers, (2017). arXiv:1705.04831
  16. 16.
    Tout, A., Dabboucy, A.N., Howalla, K.: Prime labeling of graphs. Natl. Acad. Sci. Lett. 11, 365–368 (1982)zbMATHGoogle Scholar
  17. 17.
    Vaidya, S.K., Prajapati, U.M.: Some results on prime and \(k\)-prime labeling. J. Math. Res. 3, 66–75 (2011)zbMATHGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mosaic Center RadstockGostivarMacedonia

Personalised recommendations