On Binary Matroids Without a \(P_{10}\)-Minor
Original Paper
First Online:
Received:
Revised:
- 23 Downloads
Abstract
We study the class of binary matroids without a \(P_{10}\)-minor and find all internally 4-connected non-regular matroids in the class.
Keywords
Binary matroids 3-connected Internally 4-connected \(P_{10}\)Mathematics Subject Classification
05B35References
- 1.Bouchet, A., Cunningham, W.H., Geelen, J.F.: Principle unimodular skew-symmetric matrices. Combinatorica 18, 461–486 (1998)MathSciNetCrossRefMATHGoogle Scholar
- 2.Ding, G., Wu, H.: Characterizing binary matroids with no \(P_9\)-minor. Adv. Appl. Math. 70, 70–91 (2015)MathSciNetCrossRefMATHGoogle Scholar
- 3.Geelen, J.F., Gerards, A.M.H., Kapoor, A.: The excluded minors for \(GF(4)\)-representable matroids. J. Combin. Theory, Ser. B 9, 247–299 (2001)MathSciNetMATHGoogle Scholar
- 4.Hlinĕný, P.: The Macek Program. http://www.mcs.vuw.ac.nz/research/macek/ (2005)
- 5.Kingan, S.R.: A generalization of a graph result of D.W. Hall. Discrete Math. 173, 129–135 (1997)MathSciNetCrossRefMATHGoogle Scholar
- 6.Kingan, S.R., Lemos, M.: A decomposition theorem for binary matroids with no prism minor. Graphs Comb. 30(6), 1479–1497 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 7.Kingan, S.R., Lemos, M.: Strong splitter theorem. Ann. Comb. 18, 111–116 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 8.Mayhew, D., Royle, G.: The internally 4-connected binary matroids with no \(M(K_{5}\ e)\)- minor. SIAM J. Discrete Math. 26(2), 755–767 (2013)CrossRefMATHGoogle Scholar
- 9.Mayhew, D., Royle, G., Whittle, G.: The Internally 4-Connected Binary Matroids with no \(M(K_{3,3})\)-Minor, Memoirs of the American Mathematical Society, vol. 981. American Mathematical Society, Providence (2011)MATHGoogle Scholar
- 10.Oxley, J.G.: The binary matroids with no 4-wheel minor. Trans. Am. Math. Soc. 301, 63–75 (1987)MathSciNetMATHGoogle Scholar
- 11.Oxley, J.G.: Matroid Theory. Oxford University Press, New York (1992)MATHGoogle Scholar
- 12.Seymour, P.D.: Decomposition of regular matroids. J. Combin. Theory Ser. B 28, 305–359 (1980)MathSciNetCrossRefMATHGoogle Scholar
- 13.Williams, J.T., Zhou, X.: A new proof for a result of Kingan and Lemos. Graphs Comb. 32(1), 403–417 (2016)MathSciNetCrossRefMATHGoogle Scholar
- 14.Qin, H., Zhou, X.: The class of binary matroids with no \(M(K_{3,3})\)-, \(M^{*}(K_{3,3})\)-, \(M(K_5)\)-, or \(M^{*}(K_5)\)-minor. J. Comb. Theory Ser. B 90, 173–184 (2004)CrossRefMATHGoogle Scholar
- 15.Zhou, X.: On internally 4-connected non-regular binary matroids. J. Comb. Theory Ser. B 91, 327–343 (2004)MathSciNetCrossRefMATHGoogle Scholar
Copyright information
© Springer Japan KK, part of Springer Nature 2018