Advertisement

Interactive influences of color attributes on color perception bias

  • Huan Yang
  • Yi-Na LiEmail author
  • Kang Zhang
Original Article

Abstract

Graphic user interfaces and information visualization use color to represent qualitative or quantitative information. The interaction between adjacent colors leads to perceptual bias, known as simultaneous color contrast, and implicitly distort the understanding of visualized information presentation. To investigate the effect of simultaneous color contrast, we conduct two empirical experiments, in both theoretical and application settings, using a set of random target/proximal combinations of colors in the CIEL*a*b* color space. The perception bias of a target color, induced by its surround, is measured. Linear regression analysis indicates that both a high saturation of the proximal color and a high a*/low b* value of the target color cause a strong simultaneous color contrast (i.e., high perception bias). A moderating effect analysis indicates that a* value/b* value of the target color moderates the influence of the saturation of the proximal color on the perception bias. For example, controlling the saturation of the proximal color, the more reddish/yellowish the target color is, the more alleviated the perceptual bias is.

Keywords

Color perception Perception bias Simultaneous color contrast Visualization 

Notes

Funding

This research is supported by National Natural Science Foundation of China (71702080), Humanities and Social Sciences Fund of Ministry of Education (17YJC630071), and an Australian Government Research Training Program Scholarship.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

371_2019_1706_MOESM1_ESM.docx (226 kb)
Supplementary material 1 (docx 226 KB)

References

  1. 1.
    Ward, M.O., Grinstein, G., Keim, D.: Interactive Data Visualization: Foundations, Techniques, and Applications. AK Peters/CRC Press, Boca Raton (2015)zbMATHGoogle Scholar
  2. 2.
    Rizzi, A., Bonanomi, C.: Colour illusions and the human visual system. In: Best, J. (ed.) Colour Design, pp 83–104. Elsevier, Amsterdam (2012)Google Scholar
  3. 3.
    Aisch, G., Pearce, A., Russell, K.: How Britain Voted in the E.U. Referendum. The New York times. https://www.nytimes.com/interactive/2016/06/24/world/europe/how-britain-voted-brexit-referendum.html (2016). Accessed 24 June 2016
  4. 4.
    Chevreul, E.: De la loi du contraste simultané des couleurs et de l’assortiment des objets colorés. Chez Pitois-Levrault, Paris (1839)Google Scholar
  5. 5.
    Mittelstädt, S., Stoffel, A., Keim, D.A.: Methods for compensating contrast effects in information visualization. Comput. Gr. Forum. 33(3), 231–240 (2014).  https://doi.org/10.1111/cgf.12379 Google Scholar
  6. 6.
    Tufte, E.R., Goeler, N.H., Benson, R.: Envisioning Information. Graphics press, Cheshire (1990)Google Scholar
  7. 7.
    Li, B., Jiang, G., Shao, W.: Color correction based on point clouds alignment in the logarithmic RGB space. Vis. Comput. 31(3), 257–270 (2015).  https://doi.org/10.1007/s00371-013-0916-z Google Scholar
  8. 8.
    Wang, Y., Chen, H., Li, S., Zhang, J., Gao, C.: Object tracking by color distribution fields with adaptive hierarchical structure. Vis. Comput. 33(2), 235–247 (2017).  https://doi.org/10.1007/s00371-015-1189-5 Google Scholar
  9. 9.
    Csurka, G., Skaff, S., Marchesotti, L., Saunders, C.: Building look & feel concept models from color combinations. Vis. Comput. 27(12), 1039–1053 (2011).  https://doi.org/10.1007/s00371-011-0657-9 Google Scholar
  10. 10.
    Luo, M.R., Cui, G., Rigg, B.: The development of the cie 2000 colour-difference formula: Ciede 2000. Color Res. Appl. 26(5), 340–350 (2001).  https://doi.org/10.1117/12.464549 Google Scholar
  11. 11.
    Bowmaker, J.K.: Trichromatic colour vision: why only three receptor channels? Trends Neurosci. 6, 41–43 (1983).  https://doi.org/10.1016/0166-2236(83)90019-x Google Scholar
  12. 12.
    Wuerger, S., Xiao, K.: Color vision, opponent theory. In: Luo, R. (ed.) Encyclopedia of Color Science and Technology, pp. 1–6. Springer, Heidelberg (2015)Google Scholar
  13. 13.
    Mullen, K.T., Kingdom, F.A.A.: Differential distributions of red-green and blue-yellow cone opponency across the visual field. Vis. Neurosci. 19(1), 109–118 (2002).  https://doi.org/10.1017/s0952523802191103 Google Scholar
  14. 14.
    Klauke, S., Wachtler, T.: Tilt in color space: hue changes induced by chromatic surrounds. J. Vis. 15(13), 1–11 (2015).  https://doi.org/10.1167/15.13.17 Google Scholar
  15. 15.
    Ratnasingam, S., Anderson, B.L.: What predicts the strength of simultaneous color contrast? J. Vis. 17(2), 13 (2017).  https://doi.org/10.1167/17.2.13 Google Scholar
  16. 16.
    Nijboer, T.C.W., Gebuis, T., te Pas, S.F., et al.: Interactions between colour and synaesthetic colour: an effect of simultaneous colour contrast on synaesthetic colours. Vis. Res. 51(1), 43–47 (2011).  https://doi.org/10.1016/j.visres.2010.09.030 Google Scholar
  17. 17.
    Albers, J.: Interaction of Color. Yale University Press, London (2013)Google Scholar
  18. 18.
    Perales, E., Martínez-Verdú, F., Viqueira, V., et al.: Computing the number of distinguishable colors under several illuminants and light sources. Conf. Colour Gr. Imaging Vis. 1, 414–419 (2006)Google Scholar
  19. 19.
    Schloss, K.B., Palmer, S.E.: Aesthetic response to color combinations: preference, harmony, and similarity. Attent. Percept. Psychophys. 73(2), 551–571 (2011).  https://doi.org/10.3758/s13414-010-0027-0 Google Scholar
  20. 20.
    Geisler, W.S.: Adaptation, afterimages and cone saturation. Vis. Res. 18(3), 279–289 (1978).  https://doi.org/10.1016/0042-6989(78)90162-1 Google Scholar
  21. 21.
    Cohen, J.: A relationalist’s guide to error about color perception. Noûs 41(2), 335–353 (2007).  https://doi.org/10.1111/j.1468-0068.2007.00650.x Google Scholar
  22. 22.
    Stone, M., Szafir, D.A., Setlur, V.: An engineering model for color difference as a function of size. In: Color and Imaging Conference. Society for Imaging Science and Technology, 2014, pp. 253–258 (2014)Google Scholar
  23. 23.
    Chalmers, P.A.: The role of cognitive theory in human–computer interface. Comput. Hum. Behav. 19(5), 593–607 (2003).  https://doi.org/10.1016/s0747-5632(02)00086-9 Google Scholar
  24. 24.
    Peterson, M.S., Kramer, A.F., Wang, R.F., et al.: Visual search has memory. Psychol. Sci. 12(4), 287–292 (2001).  https://doi.org/10.1037/e501882009-747 Google Scholar
  25. 25.
    Kirschmann, A.: Color-saturation and its quantitative relations. Am. J. Psychol. 7(3), 386–404 (1896).  https://doi.org/10.2307/1411388 Google Scholar
  26. 26.
    Kinney, J.: Factors affecting induced color. Vis. Res. 2(12), 503–525 (1962).  https://doi.org/10.1016/0042-6989(62)90052-4 Google Scholar
  27. 27.
    Shepherd, A.J.: A vector model of colour contrast in a coneexcitation colour space. Perception 26(4), 455–470 (1997).  https://doi.org/10.1068/p260455 Google Scholar
  28. 28.
    Krauskopf, J., Zaidi, Q., Mandlert, M.B.: Mechanisms of simultaneous color induction. J. Opt. Soc. Am. A 3(10), 1752–1757 (1986).  https://doi.org/10.1364/josaa.3.001752 Google Scholar
  29. 29.
    Bosten, J.M., Mollon, J.D.: Kirschmann’s fourth law. Vis. Res. 53(1), 40–46 (2012).  https://doi.org/10.1016/j.visres.2011.11.007 Google Scholar
  30. 30.
    Williams, L.A., Schofield, T.P., Whitford, T.J.: Romantic red: testing the characteristics of color-attraction effects in a novel paradigm. Collabra Psychol. 3(1), 1–10 (2017).  https://doi.org/10.1525/collabra.54 Google Scholar
  31. 31.
    Fairchild, M.D.: Color Appear. Models. Wiley, Hoboken (2013)Google Scholar
  32. 32.
    Breitmeyer, B.G., Breier, J.I.: Effects of background color on reaction time to stimuli varying in size and contrast: inferences about human M channels. Vis. Res. 34(8), 1039–1045 (1994).  https://doi.org/10.1016/0042-6989(94)90008-6 Google Scholar
  33. 33.
    Ishihara, S.: Test for Colour-Blindness. Kanehara Shuppan Company, Tokyo (1987)Google Scholar
  34. 34.
    Sears, A., Jacko, J.A.: The Human–computer Interaction Handbook: Fundamentals, Evolving Technologies and Emerging Applications. CRC Press, Boca Raton (2007)Google Scholar
  35. 35.
    Szafir, D.A.: Modeling color difference for visualization design. IEEE Trans. Vis. Comput. Gr. 24(1), 392–401 (2018).  https://doi.org/10.1109/tvcg.2017.2744359 Google Scholar
  36. 36.
    Maloney, L.T., Wandell, B.A.: Color constancy: a method for recovering surface spectral reflectance. J. Opt. Soc. Am. A 3(1), 29–33 (1986).  https://doi.org/10.1364/josaa.3.000029 Google Scholar
  37. 37.
    Sartori, A., Culibrk, D.Yan.Y., et al.: Who’s afraid of itten: Using the art theory of color combination to analyze emotions in abstract paintings. In: Proceedings of the 23rd ACM International Conference on Multimedia, pp. 311–320 (2015)Google Scholar
  38. 38.
    Choudhury, A.K.R.: Principles of colour perception. In: Principles of Colour and Appearance Measurement, pp. 144-184. Elsevier, Amsterdam (2014)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Intelligence and ComputingTianjin UniversityTianjinChina
  2. 2.School of ManagementUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Department of Computer ScienceThe University of Texas at DallasRichardsonUSA
  4. 4.Faculty of Information TechnologyMacau University of Science and TechnologyMacauChina

Personalised recommendations