Advertisement

ISPH–PBD: coupled simulation of incompressible fluids and deformable bodies

  • Nadine Abu RummanEmail author
  • Prapanch Nair
  • Patric Müller
  • Loïc Barthe
  • David Vanderhaeghe
Original Paper
  • 173 Downloads

Abstract

We present an efficient and stable method for simulating the two-way coupling of incompressible fluids and deformable bodies. In our method, the fluid is represented by particles, and simulated using divergence-free incompressible smoothed-particle hydrodynamics (ISPH). The deformable bodies are represented by polygonal meshes, where the elastic deformations are simulated using a position-based dynamics scheme. Our technique enforces incompressibility on the fluid using divergence-free constraints on the velocity field, while it effectively simulates the physical features of deformable bodies. Most current ISPH methods are struggling with the issue of free-surface boundary conditions. We handle this problem by introducing a novel free-surface formulation, where our free-surface model obviates the need to identify the surface particles. For the interaction between the fluid and the deformable solids, we model the forces that both phases, fluid and solid, exert upon each other. We demonstrate that our approach effectively handles complex coupling scenarios between fluids and thin deformable shells or highly deformable solids, and produces plausible results.

Keywords

ISPH PBD Thin shells Deformable bodies Fluids 

Notes

Compliance with ethical standards

Funding

This work was funded by the IM&M project FOLDDyn (ANR-16-CE33-0015) and by the Deutsche Forschungsgemeinschaft (DFG) through the Cluster of Excellence Engineering of Advanced Materials. We are grateful to the CIMI lab for funding a postdoctoral fellowship to Nadine Abu Rumman. We would like to thank the reviewers for their insightful comments, and the authors wish to express their deepest gratitude to Dr.Bart de Keijzer for the careful proof-reading of this paper.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

Supplementary material 1 (mp4 72970 KB)

References

  1. 1.
    Akbay, M., Nobles, N., Zordan, V., Shinar, T.: An extended partitioned method for conservative solid-fluid coupling. ACM Trans. Graph. 37(4), 86:1–86:12 (2018).  https://doi.org/10.1145/3197517.3201345 CrossRefGoogle Scholar
  2. 2.
    Akinci, N., Cornelis, J., Akinci, G., Teschner, M.: Coupling elastic solids with smoothed particle hydrodynamics fluids. Comput. Anim. Virtual Worlds 24(3–4), 195–203 (2013).  https://doi.org/10.1002/cav.1499 CrossRefGoogle Scholar
  3. 3.
    Akinci, N., Ihmsen, M., Akinci, G., Solenthaler, B., Teschner, M.: Versatile rigid-fluid coupling for incompressible SPH. ACM Trans. Graph. 31(4), 62:1–62:8 (2012).  https://doi.org/10.1145/2185520.2185558 CrossRefGoogle Scholar
  4. 4.
    Band, S., Gissler, C., Ihmsen, M., Cornelis, J., Peer, A., Teschner, M.: Pressure boundaries for implicit incompressible SPH. ACM Trans. Graph. 37(2), 14:1–14:11 (2018).  https://doi.org/10.1145/3180486 CrossRefGoogle Scholar
  5. 5.
    Batty, C., Bertails, F., Bridson, R.: A fast variational framework for accurate solid-fluid coupling. In: ACM SIGGRAPH 2007 Papers, SIGGRAPH ’07. ACM, New York, NY, USA (2007).  https://doi.org/10.1145/1275808.1276502
  6. 6.
    Batty, C., Houston, B.: A simple finite volume method for adaptive viscous liquids. In: Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’11, pp. 111–118. ACM, New York, NY, USA (2011).  https://doi.org/10.1145/2019406.2019421
  7. 7.
    Becker, M., Teschner, M.: Weakly compressible SPH for free surface flows. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’07, pp. 209–217. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2007). http://dl.acm.org/citation.cfm?id=1272690.1272719
  8. 8.
    Bell, N., Yu, Y., Mucha, P.J.: Particle-based simulation of granular materials. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’05, pp. 77–86. ACM, New York, NY, USA (2005).  https://doi.org/10.1145/1073368.1073379
  9. 9.
    Bender, J., Koschier, D.: Divergence-free smoothed particle hydrodynamics. In: Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’15, pp. 147–155. ACM, New York, NY, USA (2015).  https://doi.org/10.1145/2786784.2786796
  10. 10.
    Bender, J., Muller, M., Otaduy, M.A., Teschner, M., Macklin, M.: A survey on position-based simulation methods in computer graphics. Comput. Graph. Forum 33(6), 228–251 (2014)CrossRefGoogle Scholar
  11. 11.
    Bodin, K., Lacoursiere, C., Servin, M.: Constraint fluids. IEEE Trans. Vis. Comput. Graph. 18(3), 516–526 (2012).  https://doi.org/10.1109/TVCG.2011.29 CrossRefGoogle Scholar
  12. 12.
    Bøkmann, A., Shipilova, O., Skeie, G.: Incompressible SPH for free surface flows. Comput. Fluids 67, 138–151 (2012).  https://doi.org/10.1016/j.compfluid.2012.07.007 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Braley, C., Tech, V., Sandu, A.: Fluid Simulation for Computer Graphics: A Tutorial in Grid Based and Particle Based Methods. Virginia Tech, Blacksburg (2009)Google Scholar
  14. 14.
    Bridson, R., Müller-Fischer, M.: Fluid simulation: siggraph 2007 course notesvideo files associated with this course are available from the citation page. In: ACM SIGGRAPH 2007 Courses, SIGGRAPH ’07, pp. 1–81. ACM, New York, NY, USA (2007).  https://doi.org/10.1145/1281500.1281681
  15. 15.
    Carlson, M., Mucha, P.J., Turk, G.: Rigid fluid: animating the interplay between rigid bodies and fluid. ACM Trans. Graph. 23(3), 377–384 (2004).  https://doi.org/10.1145/1015706.1015733 CrossRefGoogle Scholar
  16. 16.
    Chentanez, N., Goktekin, T.G., Feldman, B.E., O’Brien, J.F.: Simultaneous coupling of fluids and deformable bodies. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 83–89 (2006). http://graphics.cs.berkeley.edu/papers/Chentanez-SCP-2006-08/
  17. 17.
    Chentanez, N., Müller, M.: Real-time eulerian water simulation using a restricted tall cell grid. ACM Trans. Graph. 30(4), 82:1–82:10 (2011).  https://doi.org/10.1145/2010324.1964977 CrossRefGoogle Scholar
  18. 18.
    Chow, A.D., Rogers, B.D., Lind, S.J., Stansby, P.K.: Incompressible SPH (ISPH) with fast poisson solver on a GPU. Comput. Phys. Commun. 226, 81 (2018)CrossRefGoogle Scholar
  19. 19.
    Clavet, S., Beaudoin, P., Poulin, P.: Particle-based viscoelastic fluid simulation. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’05, pp. 219–228. ACM, New York, NY, USA (2005).  https://doi.org/10.1145/1073368.1073400
  20. 20.
    Cornelis, J., Bender, J., Gissler, C., Ihmsen, M., Teschner, M.: An optimized source term formulation for incompressible SPH. Vis. Comput. 35, 579 (2018).  https://doi.org/10.1007/s00371-018-1488-8 CrossRefGoogle Scholar
  21. 21.
    Cummins, S.J., Rudman, M.: An SPH projection method. J. Comput. Phys. 152(2), 584–607 (1999).  https://doi.org/10.1006/jcph.1999.6246 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Dehnen, W., Aly, H.: Improving convergence in smoothed particle hydrodynamics simulations without pairing instability. Mon. Not. R. Astron. Soc. 425(2), 1068–1082 (2012).  https://doi.org/10.1111/j.1365-2966.2012.21439.x CrossRefGoogle Scholar
  23. 23.
    Desbrun, M., Gascuel, M.P.: Smoothed particles: A new paradigm for animating highly deformable bodies. In: Proceedings of the Eurographics Workshop on Computer Animation and Simulation ’96, pp. 61–76. Springer, New York, Inc., New York, NY, USA (1996). http://dl.acm.org/citation.cfm?id=274976.274981
  24. 24.
    Färstenau, J.P., Avci, B., Wriggers, P.: A comparative numerical study of pressure-poisson-equation discretization strategies for SPH. 12th International SPHERIC Workshop, Ourense, Spain pp. 1–8 (2017)Google Scholar
  25. 25.
    Faure, F., Allard, J., Nesme, M.: Eulerian contact for versatile collision processing. Rapport de recherche RR-6203, INRIA (2007)Google Scholar
  26. 26.
    Foster, N., Metaxas, D.: Controlling fluid animation. In: Proceedings of the 1997 Conference on Computer Graphics International, CGI ’97, p. 178. IEEE Computer Society, Washington, DC, USA (1997). http://dl.acm.org/citation.cfm?id=792756.792862
  27. 27.
    Fournier, A., Reeves, W.T.: A simple model of ocean waves. SIGGRAPH Comput. Graph. 20(4), 75–84 (1986).  https://doi.org/10.1145/15886.15894 CrossRefGoogle Scholar
  28. 28.
    Fratarcangeli, M., Pellacini, F.: Scalable partitioning for parallel position based dynamics. Comput. Graph. Forum 34(2), 405–413 (2015).  https://doi.org/10.1111/cgf.12570 CrossRefGoogle Scholar
  29. 29.
    Génevaux, O., Habibi, A., Dischler, J.M.: Simulating fluid–solid interaction. In: Proceedings of the Graphics Interface 2003 Conference, June 11–13, 2003, Halifax, Nova Scotia, Canada, pp. 31–38. CIPS, Canadian Human-Computer Communication Society, Canadian Human-Computer Communications Society and A K Peters Ltd. (2003). http://graphicsinterface.org/wp-content/uploads/gi2003-4.pdf
  30. 30.
    Gerszewski, D., Bargteil, A.: Physics-based animation of large-scale splashing liquids. ACM Trans. Graph. 32(6), 185 (2013).  https://doi.org/10.1145/2508363.2508430 CrossRefGoogle Scholar
  31. 31.
    Goktekin, T.G., Bargteil, A.W., O’Brien, J.F.: A method for animating viscoelastic fluids. ACM Trans. Graph. 23(3), 463–468 (2004).  https://doi.org/10.1145/1015706.1015746 CrossRefGoogle Scholar
  32. 32.
    Guendelman, E., Selle, A., Losasso, F., Fedkiw, R.: Coupling water and smoke to thin deformable and rigid shells. ACM Trans. Graph. 24(3), 973–981 (2005).  https://doi.org/10.1145/1073204.1073299 CrossRefGoogle Scholar
  33. 33.
    Harada, T., Koshizuka, S., Kawaguchi, Y.: Real-time fluid simulation coupled with cloth. In: Lim, I.S., Duce, D. (eds.) Theory and Practice of Computer Graphics. The Eurographics Association, Munich (2007).  https://doi.org/10.2312/LocalChapterEvents/TPCG/TPCG07/013-020 Google Scholar
  34. 34.
    Ihmsen, M., Cornelis, J., Solenthaler, B., Horvath, C., Teschner, M.: Implicit incompressible SPH. IEEE Trans. Vis. Comput. Graph. 20(3), 426–435 (2014).  https://doi.org/10.1109/TVCG.2013.105 CrossRefGoogle Scholar
  35. 35.
    Ihmsen, M., Orthmann, J., Solenthaler, B., Kolb, A., Teschner, M.: SPH fluids in computer graphics. In: Lefebvre, S., Spagnuolo, M. (eds.) Eurographics 2014-State of the Art Reports. The Eurographics Association, Munich (2014).  https://doi.org/10.2312/egst.20141034 Google Scholar
  36. 36.
    Irving, G., Guendelman, E., Losasso, F., Fedkiw, R.: Efficient simulation of large bodies of water by coupling two and three dimensional techniques. ACM Trans. Graph. 25(3), 805–811 (2006).  https://doi.org/10.1145/1141911.1141959 CrossRefGoogle Scholar
  37. 37.
    Jiang, C., Schroeder, C., Teran, J., Stomakhin, A., Selle, A.: The material point method for simulating continuum materials. In: ACM SIGGRAPH 2016 Courses, SIGGRAPH ’16, pp. 24:1–24:52. ACM, New York, NY, USA (2016).  https://doi.org/10.1145/2897826.2927348
  38. 38.
    Kang, N., Sagong, D.: Incompressible sph using the divergence-free condition. Comput. Graph. Forum 33(7), 219–228 (2014).  https://doi.org/10.1111/cgf.12490 CrossRefGoogle Scholar
  39. 39.
    Koschier, D., Bender, J.: Density maps for improved sph boundary handling. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’17, pp. 1:1–1:10. ACM, New York, NY, USA (2017).  https://doi.org/10.1145/3099564.3099565
  40. 40.
    Koshizuka, S., Oka, Y.: Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl. Sci. Eng. 123(3), 421–434 (1996).  https://doi.org/10.13182/NSE96-A24205 CrossRefGoogle Scholar
  41. 41.
    Lenaerts, T., Dutré, P.: Unified sph model for fluid-shell simulations. In: ACM SIGGRAPH 2008 Posters, SIGGRAPH ’08, pp. 12:1–12:1. ACM, New York, NY, USA (2008).  https://doi.org/10.1145/1400885.1400898
  42. 42.
    Levin, D.I.W., Litven, J., Jones, G.L., Sueda, S., Pai, D.K.: Eulerian solid simulation with contact. ACM Trans. Graph. 30(4), 36:1–36:10 (2011).  https://doi.org/10.1145/2010324.1964931 CrossRefGoogle Scholar
  43. 43.
    Lind, S., Xu, R., Stansby, P., Rogers, B.: Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. J. Comput. Phys. 231(4), 1499–1523 (2012).  https://doi.org/10.1016/j.jcp.2011.10.027 MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Losasso, F., Talton, J., Kwatra, N., Fedkiw, R.: Two-way coupled SPH and particle level set fluid simulation. IEEE Trans. Vis. Comput. Graph. 14(4), 797–804 (2008).  https://doi.org/10.1109/TVCG.2008.37 CrossRefGoogle Scholar
  45. 45.
    Lu, W., Jin, N., Fedkiw, R.: Two-way coupling of fluids to reduced deformable bodies. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’16, pp. 67–76. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2016). http://dl.acm.org/citation.cfm?id=2982818.2982829
  46. 46.
    Maciá, F., Antuono, M., González, L.M., Colagrossi, A.: Theoretical analysis of the no-slip boundary condition enforcement in sph methods. Prog. Theor. Phys. 125(6), 1091–1121 (2011).  https://doi.org/10.1143/PTP.125.1091 CrossRefzbMATHGoogle Scholar
  47. 47.
    Macklin, M., Müller, M.: Position based fluids. ACM Trans. Graph. 32(4), 104:1–104:12 (2013).  https://doi.org/10.1145/2461912.2461984 CrossRefzbMATHGoogle Scholar
  48. 48.
    Macklin, M., Müller, M., Chentanez, N.: Xpbd: Position-based simulation of compliant constrained dynamics. In: Proceedings of the 9th International Conference on Motion in Games, MIG ’16, pp. 49–54. ACM, New York, NY, USA (2016).  https://doi.org/10.1145/2994258.2994272
  49. 49.
    Macklin, M., Müller, M., Chentanez, N., Kim, T.Y.: Unified particle physics for real-time applications. ACM Trans. Graph. 33(4), 153:1–153:12 (2014).  https://doi.org/10.1145/2601097.2601152 CrossRefGoogle Scholar
  50. 50.
    Monaghan, J.J.: Smoothed particle hydrodynamics. Ann. Rev. Astron. Astrophys. 30(1), 543–574 (1992)CrossRefGoogle Scholar
  51. 51.
    Morris, J.P., Fox, P.J., Zhu, Y.: Modeling low reynolds number incompressible flows using SPH. J. Comput. Phys. 136(1), 214–226 (1997).  https://doi.org/10.1006/jcph.1997.5776 CrossRefzbMATHGoogle Scholar
  52. 52.
    Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’03, pp. 154–159. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2003). http://dl.acm.org/citation.cfm?id=846276.846298
  53. 53.
    Müller, M., Heidelberger, B., Hennix, M., Ratcliff, J.: Position based dynamics. J. Vis. Comun. Image Represent. 18(2), 109–118 (2007).  https://doi.org/10.1016/j.jvcir.2007.01.005 CrossRefGoogle Scholar
  54. 54.
    Müller, M., Schirm, S., Teschner, M., Heidelberger, B., Gross, M.: Interaction of fluids with deformable solids. Comput. Anim. Virtual Worlds 15(3–4), 159–171 (2004).  https://doi.org/10.1002/cav.18 CrossRefGoogle Scholar
  55. 55.
    Nair, P., Tomar, G.: Volume conservation issues in incompressible smoothed particle hydrodynamics. J. Comput. Phys. 297(C), 689–699 (2015).  https://doi.org/10.1016/j.jcp.2015.05.042 MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Nealen, A., Müller, M., Keiser, R., Boxerman, E., Carlson, M.: Physically based deformable models in computer graphics. Comput. Graph. Forum 25(4), 809–836 (2006).  https://doi.org/10.1111/j.1467-8659.2006.01000.x CrossRefGoogle Scholar
  57. 57.
    Nishida, A.: Experience in Developing an Open Source Scalable Software Infrastructure in Japan, pp. 448–462. Springer, Berlin (2010).  https://doi.org/10.1007/978-3-642-12165-4_36 Google Scholar
  58. 58.
    Peer, A., Gissler, C., Band, S., Teschner, M.: An implicit sph formulation for incompressible linearly elastic solids. Comput. Graph. Forum (2017).  https://doi.org/10.1111/cgf.13317 Google Scholar
  59. 59.
    Premzoe, S., Tasdizen, T., Bigler, J., Lefohn, A., Whitaker, R.T.: Particle-based simulation of fluids. Comput. Graph. Forum (2003).  https://doi.org/10.1111/1467-8659.00687 Google Scholar
  60. 60.
    Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., Fedkiw, R.: Directable photorealistic liquids. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’04, pp. 193–202. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2004).  https://doi.org/10.1145/1028523.1028549
  61. 61.
    Robinson-Mosher, A., English, R.E., Fedkiw, R.: Accurate tangential velocities for solid fluid coupling. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’09, pp. 227–236. ACM, New York, NY, USA (2009).  https://doi.org/10.1145/1599470.1599500
  62. 62.
    Robinson-Mosher, A., Shinar, T., Gretarsson, J., Su, J., Fedkiw, R.: Two-way coupling of fluids to rigid and deformable solids and shells. In: ACM SIGGRAPH 2008 Papers, SIGGRAPH ’08, pp. 46:1–46:9. ACM, New York, NY, USA (2008).  https://doi.org/10.1145/1399504.1360645
  63. 63.
    Schechter, H., Bridson, R.: Ghost SPH for animating water. ACM Trans. Graph. 31(4), 61:1–61:8 (2012).  https://doi.org/10.1145/2185520.2185557 CrossRefGoogle Scholar
  64. 64.
    Si, H.: Tetgen, a delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. 41(2), 11:1–11:36 (2015).  https://doi.org/10.1145/2629697 MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Solenthaler, B., Pajarola, R.: Predictive-corrective incompressible SPH. ACM Trans. Graph. 28(3), 40:1–40:6 (2009).  https://doi.org/10.1145/1531326.1531346 CrossRefGoogle Scholar
  66. 66.
    Stam, J.: Stable fluids. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’99, pp. 121–128. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (1999).  https://doi.org/10.1145/311535.311548
  67. 67.
    Teng, Y., Levin, D.I.W., Kim, T.: Eulerian solid–fluid coupling. ACM Trans. Graph. 35(6), 200:1–200:8 (2016).  https://doi.org/10.1145/2980179.2980229 CrossRefGoogle Scholar
  68. 68.
    Teschner, M., Heidelberger, B., Müller, M., Pomerantes, D., Gross, M.H.: Optimized spatial hashing for collision detection of deformable objects. In: VMV (2003)Google Scholar
  69. 69.
    Winchenbach, R., Hochstetter, H., Kolb, A.: Infinite continuous adaptivity for incompressible SPH. ACM Trans. Graph. 36(4), 102:1–102:10 (2017).  https://doi.org/10.1145/3072959.3073713 CrossRefGoogle Scholar
  70. 70.
    Zarifi, O., Batty, C.: A positive-definite cut-cell method for strong two-way coupling between fluids and deformable bodies. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’17, pp. 7:1–7:11. ACM, New York, NY, USA (2017).  https://doi.org/10.1145/3099564.3099572

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Nadine Abu Rumman
    • 1
    Email author
  • Prapanch Nair
    • 2
  • Patric Müller
    • 2
  • Loïc Barthe
    • 3
  • David Vanderhaeghe
    • 3
  1. 1.University College London (UCL)LondonUnited Kingdom
  2. 2.Institute for Multiscale Simulation (MSS)ErlangenGermany
  3. 3.Computer Science Research Institute of Toulouse (IRIT)ToulouseFrance

Personalised recommendations