Advertisement

Tight lower bound on transmission for single image dehazing

  • Suresh Chandra Raikwar
  • Shashikala Tapaswi
Original Article

Abstract

Effective functioning of outdoor vision systems depends upon the quality of input. Varying effects of light create different weather conditions (like raining, snowfall, haze, mist, fog, and cloud) due to optical properties of light and physical existence of different size particles in the atmosphere. Thus, outdoor images and videos captured in adverse environmental conditions have poor visibility due to scattering of light by atmospheric particles. Visibility restoration (dehazing) of degraded (hazy) images is critical for the useful performance of outdoor vision systems. Most of the existing methods of image dehazing considered atmospheric scattering model (ASM) to improve the visibility of hazy images or videos. According to ASM, the visual quality of dehazed image depends upon accurate estimation of transmission. Existing methods presented different priors with strong assumptions to estimate transmission. The proposed method introduces a tight lower bound on transmission. However, the accuracy of the proposed tight lower bound depends upon minimum color channel of haze-free image. Therefore, a prior is proposed to estimate the minimum color channel of the haze-free image. Furthermore, a blind assessment metric is proposed to evaluate the dehazing methods. Restored and matching corner points of the hazy and haze-free image are used to compute the proposed blind assessment metric. Obtained results are compared with renowned dehazing methods by qualitative and quantitative analysis to prove the efficacy of the proposed method.

Keywords

Atmospheric scattering Defogging Dehazing Fog Haze Optimization Restoration Transmission 

Notes

Compliance with ethical standards

Conflict of interest

Authors Suresh Chandra Raikwar and Shashikala Tapaswi declare that they do not have any conflict of interest.

References

  1. 1.
    Lu, H., Li, Y., Nakashima, S., Serikawa, S.: Single image dehazing through improved atmospheric light estimation. Multimed. Tools Appl. 75(24), 17081–17096 (2016)CrossRefGoogle Scholar
  2. 2.
    Raikwar, S.C., Tapaswi, S.: An improved linear depth model for single image fog removal. Multimed. Tools Appl. 77(15), 19719–19744 (2018).  https://doi.org/10.1007/s11042-017-5398-y CrossRefGoogle Scholar
  3. 3.
    Huimin, L., Li, Y., Chen, M., Kim, H., Serikawa, S.: Brain intelligence: go beyond artificial intelligence. Mob. Netw. Appl. 23(2), 368–375 (2018)CrossRefGoogle Scholar
  4. 4.
    Narasimhan, Srinivasa G.: Models and Algorithms for Vision Through the Atmosphere. PhD thesis, New York, NY, USA (2004). AAI3115363Google Scholar
  5. 5.
    He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011)CrossRefGoogle Scholar
  6. 6.
    Zhang, Y.-Q., Ding, Y., Xiao, J.-S., Liu, J., Guo, Z.: Visibility enhancement using an image filtering approach. EURASIP J. Adv. Signal Process. 2012(1), 220–225 (2012)CrossRefGoogle Scholar
  7. 7.
    Ling, Z., Fan, G., Gong, J., Wang, Y., Xiao, L.: Perception oriented transmission estimation for high quality image dehazing. Neurocomputing 224, 82–95 (2017)CrossRefGoogle Scholar
  8. 8.
    Kim, T.K., Paik, J.K., Kang, B.S.: Contrast enhancement system using spatially adaptive histogram equalization with temporal fltering. IEEE Trans. Consum. Electron. 44(1), 82–87 (1998)CrossRefGoogle Scholar
  9. 9.
    Alex Stark, J.: Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans. Image Process. 9(5), 889–896 (2000)CrossRefGoogle Scholar
  10. 10.
    Kim, J.-Y., Kim, L.-S., Hwang, S.-H.: An advanced contrast enhancement using partially overlapped sub-block histogram equalization. IEEE Trans. Circuits Syst. Video Technol. 11(4), 475–484 (2001)CrossRefGoogle Scholar
  11. 11.
    Li, Y., Huimin, L., Li, J., Li, X., Li, Y., Serikawa, S.: Underwater image de-scattering and classification by deep neural network. Comput. Electr. Eng. 54(C), 68–77 (2016)CrossRefGoogle Scholar
  12. 12.
    Tan, K., Oakley, J.P.: Enhancement of color images in poor visibility conditions. In: Proceedings of IEEE Conference on Image Processing, vol. 2, pp. 788–791 (September 2000)Google Scholar
  13. 13.
    Nayar, S.K., Narasimhan, S.G.: Interactive deweathering of an image using physical models. In: Proceedings of IEEE Workshop on Color and Photometric Methods in Computer Vision in cnjunction with IEEE Conference on Computer Vision (October 2003)Google Scholar
  14. 14.
    Nayar, S.K., Narasimhan, S.G.: Vision in bad weather. In: Proceedings of IEEE Conference on Computer Vision, vol. 2, 820–827 (September 1999)Google Scholar
  15. 15.
    Schechner, Y.Y., Narasimhan, S.G., Nayar, S.K.: Instant dehazing of images using polarization. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 325–332 (February 2001)Google Scholar
  16. 16.
    Narasimhan, S.G., Nayar, S.K.: Contrast restoration of weather degraded images. IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 713–724 (2003)CrossRefGoogle Scholar
  17. 17.
    Narasimhan, S.G., Nayar, S.K.: Chromatic framework for vision in bad weather. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 598–605 (June 2000)Google Scholar
  18. 18.
    Shwartz, S., Namer, E., Schechner, Y.Y.: Blind haze separation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1984–1991 (February 2006)Google Scholar
  19. 19.
    He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2012)CrossRefGoogle Scholar
  20. 20.
    Meng, G., Wang, Y., Duan, J., Xiang, S., Pan, C.: Efficient image dehazing with boundary constraint and contextual regularization. In: Proceedings of IEEE International Conference on Computer Vision, pp. 617 – 624 (2013)Google Scholar
  21. 21.
    Tan, R.: Visibility in bad weather from a single image. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 24–26 (June 2008)Google Scholar
  22. 22.
    Tarel, J.P., Hautière, N.: Fast visibility restoration from a single color or gray level image. In: Proceedings of IEEE International Conference on Computer Vision, pp. 2201–2208 (September 2009)Google Scholar
  23. 23.
    Xiao, C., Gan, J.: Fast image dehazing using guided joint bilateral filter. Vis. Comput. Int. J. Comput. Graph. 28(6–8), 713–721 (2012)Google Scholar
  24. 24.
    Jha, D.K., Gupta, B., Lamba, S.S.: l2-norm-based prior for haze-removal from single image. IET Comput. Vis. 10(5), 331–341 (2016)CrossRefGoogle Scholar
  25. 25.
    Kim, J.-H., Jang, W.-D., Sim, J.-Y., Kim, C.-S.: Optimized contrast enhancement for real-time image and video dehazing. J. Vis. Commun. Image Represent. 24(3), 410–425 (2013)CrossRefGoogle Scholar
  26. 26.
    Liu, S., Rahman, M.A., Liu, S.C., Wong, C.Y., Lin, C.-F., Wu, H., Kwok, N.: Image de-hazing from the perspective of noise filtering. Comput. Electr. Eng. 62(August 2017), 345–359 (2016)Google Scholar
  27. 27.
    Berman, D., Treibitz, T., Avidan, S.: Non-local image dehazing. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)Google Scholar
  28. 28.
    Wang, W., Yuan, X., Xiaojin, W., Liu, Y.: Dehazing for images with large sky region. Neurocomputing 238(Supplement C), 365–376 (2017)CrossRefGoogle Scholar
  29. 29.
    Tang, K., Yang, J., Wang, J.: Investigating haze-relevant features in a learning framework for image dehazing. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, pp. 2995–3002 (2014)Google Scholar
  30. 30.
    Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. IEEE TRans. Image Process. 24(11), 3522–3533 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Wang, W., Yuan, X., Xiaojin, W., Liu, Y.: Fast image dehazing method based on linear transformation. IEEE Trans. Multimed. 19(6), 1142–1155 (2017)CrossRefGoogle Scholar
  32. 32.
    Li, Y., Miao, Q., Song, J., Quan, Y., Li, W.: Single image haze removal based on haze physical characteristics and adaptive sky region detection. Neurocomputing 182, 221–234 (2016)CrossRefGoogle Scholar
  33. 33.
    Yuan, H., Liu, C., Guo, Z., Sun, Z.: A region-wised medium transmission based image dehazing method. IEEE Access 5, 1735–1742 (2017)CrossRefGoogle Scholar
  34. 34.
    Silberman, N., Kohli, P., Hoiem, D., Fergus, R.: Indoor segmentation and support inference from rgbd images. In: ECCV (2012)Google Scholar
  35. 35.
    Hautiére, N., Tarel, J.-P., Lavenant, J., Aubert, D.: Automatic fog detection and estimation of visibility distance through use of an onboard camera. Mach. Vis. Appl. 17(1), 8–20 (2006)CrossRefGoogle Scholar
  36. 36.
    Choi, K.Y., Jeong, K.M., Song, B.C.: Fog detection for de-fogging of road driving images. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 1–6 (Oct 2017)Google Scholar
  37. 37.
    Ma, K., Liu, W., Wang, Z.: Perceptual evaluation of single image dehazing algorithms. In: Proceedings of IEEE International Conference on Image Processing (September 2015)Google Scholar
  38. 38.
    Tarel, J.-P., Hautière, N., Cord, A., Gruyer, D., Halmaoui, H.: Improved visibility of road scene images under heterogeneous fog. In: Proceedings of IEEE Intelligent Vehicle Symposium(IV’2010), San Diego, California, USA, pp. 478–485 (2010). http://perso.lcpc.frtarel.jean-philippe/publis/iv10.html
  39. 39.
    Bui, T.M., Kim, W.: Single image dehazing using color ellipsoid prior. IEEE Trans. Image Process. 27(2), 999–1009 (2018)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Khmag, A., Al-Haddad, S.A.R., Ramli, A.R., Kalantar, B.: Single image dehazing using second-generation wavelet transforms and the mean vector l2-norm. Vis. Comput. 34(5), 675–688 (2018)CrossRefGoogle Scholar
  41. 41.
    Yong, X., Wen, J., Fei, L., Zhang, Z.: Review of video and image defogging algorithms and related studies on image restoration and enhancement. IEEE Access 4, 165–188 (2015)Google Scholar
  42. 42.
    Wang, R., Li, R., sun, H.: Haze removal based on multiple scattering model with superpixel algorithm. J. Signal Process. 127(C), 24–36 (2016)CrossRefGoogle Scholar
  43. 43.
    Lu, H., Li, Y., Xu, X., He, L., Li, Y., Dansereau, D., Serikawa, S.: Underwater image descattering and quality assessment. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 1998–2002 (Sept 2016)Google Scholar
  44. 44.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image qualifty assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  45. 45.
    Wang, Z.: The SSIM index for image quality assessment (2003). https://ece.uwaterloo.ca/~z70wang/research/ssim/. Accessed 9 Nov 2014
  46. 46.
    Huimin, L., Li, Y., Zhang, L., Serikawa, S.: Contrast enhancement for images in turbid water. J. Opt. Soc. Am. A 32(5), 886–893 (2015)CrossRefGoogle Scholar
  47. 47.
    Serikawa, S., Huimin, L.: Underwater image dehazing using joint trilateral filter. Comput. Electr. Eng. 40(1), 41–50 (2014). 40th-year commemorative issueCrossRefGoogle Scholar
  48. 48.
    Ling, Z., Li, S., Wang, Y., Shen, H., Xiao, L.: Adaptive transmission compensation via human visual system for efficient single image dehazing. Vis. Comput. 32(5), 653–662 (2016)CrossRefGoogle Scholar
  49. 49.
    Mantiuk, R., Kim, K.J., Rempel, A.G., Heidrich, W.: Hdr-vdp-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions. ACM Trans. Graph. 30(4), 40:1–40:14 (2011)CrossRefGoogle Scholar
  50. 50.
    Mantiuk, R., Kim, K.J., Rempel, A.G., Heidrich, W.: Hdr-vdp-2: A calibrated visual metric for visibility and quality predictions in all luminance conditions. In: ACM SIGGRAPH 2011 Papers, SIGGRAPH’11, New York, NY, USA. ACM, pp. 40:1–40:14 (2011)Google Scholar
  51. 51.
    Dawn, D.D.Â., Shaikh, S.H.: A comprehensive survey of human action recognition with sspatio-temporal interest point (stip) detector. Vis. Comput. 32(3), 289–306 (2016)CrossRefGoogle Scholar
  52. 52.
    Li, Y., Lu, H., Li, K.-C., Kim, Y., Serikawa, S.: Non-uniform de-scattering and de-blurring of underwater images. Mobile Netw. Appl. 23(2), 352–362 (2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ABV-IIITMGwaliorIndia

Personalised recommendations