Advertisement

Point sets joint registration and co-segmentation

  • Siyu Hu
  • Xuejin Chen
  • Xin Tong
Original Article
  • 63 Downloads

Abstract

We present a novel approach of joint registration and co-segmentation for point sets where objects move in different ways. We consider joint registration and co-segmentation as two problems that are heavily entangled with each other; thus, we represent the input point sets as samples from a generative model and bring up with a novel formulation based on Gaussian mixture model. By maximizing the posterior probability of the samples, we gradually recover the latent object models as well as an object-level segmentation and simultaneously align the segmented points to the latent object models. Along with the formulation, we design an interactive tool that helps users intuitively intervene the process to optimize the registration and segmentation results. The experiment results on a group of synthetic and scanned point clouds demonstrate that our method is powerful and effective for joint registration and co-segmentation on point sets of multiple objects.

Keywords

Point cloud Registration Co-segmentation 

Notes

Acknowledgements

We would like to thank YantingLin and Jian Wu. They helped with data preparation for our experiments. We would also like to thank the National Natural Science Foundation for their funding. This study was funded by the National Natural Science Foundation of China under Nos. 61472377, 61632006, and 6133101.

Compliance with ethical standards

Conflict of interest

Siyu Hu declares that he has no conflict of interest. Xuejin Chen has received research Grants from Microsoft and Huawei Technology Co. Ltd. Xuejin Chen had visited Leonidas Guibass Group in Stanford University during February 21 to August 20, 2017. Xin Tong is researcher of Microsoft. He is associate editor of ACM TOG and IEEE TVCG. He is also guest professor of University of Science and Technology of China and Tianjin University.

References

  1. 1.
    Armeni, I., Sener, O., Zamir, A.R., Jiang, H., Brilakis, I., Fischer, M., Savarese, S.: 3D semantic parsing of large-scale indoor spaces. In: IEEE Computer Society, pp. 1534–1543. Los Alamitos, CA (2016).  https://doi.org/10.1109/CVPR.2016.170
  2. 2.
    Campbell, D., Petersson, L.: Gogma: Globally-optimal Gaussian mixture alignment. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5685–5694 (2016).  https://doi.org/10.1109/CVPR.2016.613
  3. 3.
    Charles, R.Q., Su, H., Kaichun, M., Guibas, L.J.: Pointnet: deep learning on point sets for 3d classification and segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 77–85 (2017).  https://doi.org/10.1109/CVPR.2017.16
  4. 4.
    Chen, H., Bhanu, B.: 3D free-form object recognition in range images using local surface patches. Pattern Recogn. Lett. 28(10), 1252–1262 (2007).  https://doi.org/10.1016/j.patrec.2007.02.009 CrossRefGoogle Scholar
  5. 5.
    Chen, K., Lai, Y.K., Wu, Y.X., Martin, R., Hu, S.M.: Automatic semantic modeling of indoor scenes from low-quality RGB-D data using contextual information. ACM Trans. Graph. 33(6), 208:1–208:12 (2014).  https://doi.org/10.1145/2661229.2661239 CrossRefGoogle Scholar
  6. 6.
    Corsini, M., Cignoni, P., Scopigno, R.: Efficient and flexible sampling with blue noise properties of triangular meshes. IEEE Trans. Vis. Comput. Graph. 18(6), 914–924 (2012).  https://doi.org/10.1109/TVCG.2012.34 CrossRefGoogle Scholar
  7. 7.
    Dai, A., Nießner, M., Zollhöfer, M., Izadi, S., Theobalt, C.: Bundlefusion: real-time globally consistent 3D reconstruction using online surface re-integration. ACM Trans. Graph. 36(4), 76 (2017).  https://doi.org/10.1145/3072959.3126814 CrossRefGoogle Scholar
  8. 8.
    Dema, M.A., Sari-Sarraf, H.: 3D scene generation by learning from examples. In: IEEE International Symposium on Multimedia, pp. 58–64 (2012).  https://doi.org/10.1109/ISM.2012.19
  9. 9.
    Evangelidis, G.D., Kounades-Bastian, D., Horaud, R., Psarakis, E.Z.: A generative model for the joint registration of multiple point sets. In: ECCV, pp. 109–122 (2014).  https://doi.org/10.1007/978-3-319-10584-0_8
  10. 10.
    Fisher, M., Ritchie, D., Savva, M., Funkhouser, T., Hanrahan, P.: Example-based synthesis of 3d object arrangements. ACM Trans. Graph. 31(6), 135:1–135:11 (2012).  https://doi.org/10.1145/2366145.2366154 CrossRefGoogle Scholar
  11. 11.
    Fisher, M., Savva, M., Li, Y., Hanrahan, P., Nießner, M.: Activity-centric scene synthesis for functional 3D scene modeling. ACM Trans. Graph. 34(6), 179:1–179:13 (2015).  https://doi.org/10.1145/2816795.2818057 CrossRefGoogle Scholar
  12. 12.
    Guo, H., Zhu, D., Mordohai, P.: Correspondence estimation for non-rigid point clouds with automatic part discovery. Vis. Comput. 32(12), 1511–1524 (2016).  https://doi.org/10.1007/s00371-015-1136-5 CrossRefGoogle Scholar
  13. 13.
    Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A., Fitzgibbon, A.: Kinectfusion: real-time 3D reconstruction and interaction using a moving depth camera. In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, UIST ’11, pp. 559–568. ACM, New York (2011).  https://doi.org/10.1145/2047196.2047270
  14. 14.
    Jia, Z., Gallagher, A.C., Saxena, A., Chen, T.: 3D reasoning from blocks to stability. IEEE Trans. Pattern Anal. Mach. Intell. 37(5), 905–918 (2015).  https://doi.org/10.1109/TPAMI.2014.2359435 CrossRefGoogle Scholar
  15. 15.
    Jian, B., Vemuri, B.C.: Robust point set registration using Gaussian mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1633–1645 (2011).  https://doi.org/10.1109/TPAMI.2010.223 CrossRefGoogle Scholar
  16. 16.
    Li, Y., Paluri, M., Rehg, J.M., Dollar, P.: Unsupervised learning of edges. In: CVPR, pp. 1619–1627 (2016).  https://doi.org/10.1109/CVPR.2016.179
  17. 17.
    Liu, Z., Zhang, Y., Wu, W., Liu, K., Sun, Z.: Model-driven indoor scenes modeling from a single image. In: Proceedings of the 41st Graphics Interface Conference, GI ’15, Halifax, Nova Scotia, Canada, June 3–5, 2015, pp. 25–32. Canadian Information Processing Society, Toronto (2015). http://dl.acm.org/citation.cfm?id=2788896
  18. 18.
    Merrell, P., Schkufza, E., Li, Z., Agrawala, M., Koltun, V.: Interactive furniture layout using interior design guidelines. ACM Trans. Graph. 30(4), 87:1–87:10 (2011).  https://doi.org/10.1145/2010324.1964982 CrossRefGoogle Scholar
  19. 19.
    Myronenko, A., Song, X.: Point set registration: coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2262–2275 (2010).  https://doi.org/10.1109/TPAMI.2010.46 CrossRefGoogle Scholar
  20. 20.
    Nan, L., Xie, K., Sharf, A.: A search-classify approach for cluttered indoor scene understanding. ACM Trans. Graph. 31(6), 137:1–137:10 (2012).  https://doi.org/10.1145/2366145.2366156 CrossRefGoogle Scholar
  21. 21.
    Nießner, M., Zollhöfer, M., Izadi, S., Stamminger, M.: Real-time 3d reconstruction at scale using voxel hashing. ACM Trans. Graph. 32(6), 169:1–169:11 (2013).  https://doi.org/10.1145/2508363.2508374 CrossRefGoogle Scholar
  22. 22.
    Rother, C., Kolmogorov, V., Blake, A.: GrabCut: interactive foreground extraction using iterated graph cuts. In: ACM SIGGRAPH 2004 Papers, pp. 309–314. ACM, New York (2004).  https://doi.org/10.1145/1186562.1015720
  23. 23.
    Rother, C., Minka, T.P., Blake, A., Kolmogorov, V.: Cosegmentation of image pairs by histogram matching: incorporating a global constraint into MRFS. In: CVPR, pp. 993–1000 (2006).  https://doi.org/10.1109/CVPR.2006.91
  24. 24.
    Strasdat, H., Newcombe, R.A., Salas-Moreno, R.F., Kelly, P.H., Davison, A.J.: Slam++: simultaneous localisation and mapping at the level of objects. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), pp. 1352–1359 (2013).  https://doi.org/10.1109/CVPR.2013.178
  25. 25.
    Taniai, T., Sinha, S.N., Sato, Y.: Joint recovery of dense correspondence and cosegmentation in two images. In: CVPR, pp. 4246–4255 (2016).  https://doi.org/10.1109/CVPR.2016.460
  26. 26.
    Tombari, F., Stefano, L.D.: Object recognition in 3d scenes with occlusions and clutter by hough voting. In: Fourth Pacific-Rim Symposium on Image and Video Technology, pp. 349–355 (2010).  https://doi.org/10.1109/PSIVT.2010.65
  27. 27.
    Wan, L., Zou, C., Zhang, H.: Full and partial shape similarity through sparse descriptor reconstruction. Vis. Comput. 33(12), 1497–1509 (2017).  https://doi.org/10.1007/s00371-016-1293-1 CrossRefGoogle Scholar
  28. 28.
    Xu, K., Chen, K., Fu, H., Sun, W.L., Hu, S.M.: Sketch2Scene: sketch-based co-retrieval and co-placement of 3D models. ACM Trans. Graph. 32(4), 123:1–123:15 (2013).  https://doi.org/10.1145/2461912.2461968 CrossRefGoogle Scholar
  29. 29.
    Xu, K., Huang, H., Shi, Y., Li, H., Long, P., Caichen, J., Sun, W., Chen, B.: Autoscanning for coupled scene reconstruction and proactive object analysis. ACM Trans. Graph. 34(6), 177:1–177:14 (2015).  https://doi.org/10.1145/2816795.2818075 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Microsoft Research AsiaBeijingChina

Personalised recommendations