Advertisement

The Visual Computer

, Volume 34, Issue 6–8, pp 1119–1128 | Cite as

Perceptual evaluation of maneuvering motion illusion for virtual pedestrians

  • Oner BarutEmail author
  • Murat Haciomeroglu
  • Ebru Akcapinar Sezer
Original Article
  • 133 Downloads

Abstract

Crowd simulations span a wide spectrum of application domains, most notably video games, evacuation scenarios, and the movie industry. However, it is not obligatory that all virtual populace applications have the primary objective of realistic simulation. In most instances, it is necessary and sufficient that viewers perceive the crowd as plausible. Even for a crowd consisting of agents navigating on linear trajectories without any maneuvers, visual motion illusion elicited by these trajectories might appear to be a natural consequence, causing them to be perceived as wriggling rather than straight. In this respect, we evaluate in this study whether simulated 3D human agents walking with constant, collision-free velocities, induce such a maneuvering motion illusion, aiming toward an efficient real-time crowd simulation. For this purpose, we recorded videos of virtual human crowds with different parameter combinations, such as the agent walking speed, crowd density, camera tilt angle, and camera distance. These videos were watched by human subjects who were instructed to mark the virtual agents who they thought had changed their gait directions. The analyzed results revealed that participants claimed the presence of maneuvering virtual agents in the videos, even though there were none in any of them. Spatial grouping of the markings highlighted that the participants mainly focused on the central area of the simulation environment, and spatiotemporal analysis of the click data also showed stronger evidence to such an illusion (see accompanying video). Furthermore, we found that all of the referred parameters have statistically significant main effects on the number of marked agents per watched video.

Keywords

Perception Motion illusion Crowd simulation Ambient crowd 

Notes

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Supplementary material

Supplementary material 1 (mp4 90790 KB)

References

  1. 1.
    Ahn, J., Oh, S., Wohn, K.: Optimized motion simplification for crowd animation. Comput. Anim. Virtual Worlds 17(3–4), 155–165 (2006)CrossRefGoogle Scholar
  2. 2.
    Azahar, M.A.B.M., Sunar, M.S., Daman, D., Bade, A.: Technologies for e-learning and digital entertainment. In: Third International Conference, Proceedings, chap. Survey on Real-Time Crowds Simulation, pp. 573–580. Springer, Berlin (2008).  https://doi.org/10.1007/978-3-540-69736-7_61
  3. 3.
    Barut, O., Haciomeroglu, M.: Real-time collision-free linear trajectory generation on gpu for crowd simulations. Vis. Comput. 31(6), 843–852 (2015).  https://doi.org/10.1007/s00371-015-1105-z CrossRefGoogle Scholar
  4. 4.
    Beacco, A., Pelechano, N., Andjar, C.: A survey of real-time crowd rendering. Comput. Graph. Forum (2015).  https://doi.org/10.1111/cgf.12774 Google Scholar
  5. 5.
    Bohannon, R.W.: Comfortable and maximum walking speed of adults aged 20–79 years: reference values and determinants. Age Ageing 26(1), 15–19 (1997).  https://doi.org/10.1093/ageing/26.1.15. http://ageing.oxfordjournals.org/content/26/1/15.abstract
  6. 6.
    Browning, R.C., Baker, E.A., Herron, J.A., Kram, R.: Effects of obesity and sex on the energetic cost and preferred speed of walking. J. Appl. Physiol. 100(2), 390–398 (2006).  https://doi.org/10.1152/japplphysiol.00767.2005. http://jap.physiology.org/content/100/2/390
  7. 7.
    Cater, K., Chalmers, A., Ward, G.: Detail to attention: exploiting visual tasks for selective rendering. In: Proceedings of the 14th Eurographics Workshop on Rendering, EGRW ’03, pp. 270–280. Eurographics Association, Aire-la-Ville, Switzerland (2003). http://dl.acm.org/citation.cfm?id=882404.882443
  8. 8.
    Dobbyn, S., Hamill, J., O’Conor, K., O’Sullivan, C.: Geopostors: A real-time geometry / impostor crowd rendering system. In: Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games, I3D ’05, pp. 95–102. ACM, New York (2005)Google Scholar
  9. 9.
    Ennis, C., Peters, C., O’Sullivan, C.: Perceptual effects of scene context and viewpoint for virtual pedestrian crowds. ACM Trans. Appl. Percept. 8(2), 10:1–10:22 (2011).  https://doi.org/10.1145/1870076.1870078 CrossRefGoogle Scholar
  10. 10.
    Hamill, J., McDonnell, R., Dobbyn, S., O’Sullivan, C.: Perceptual evaluation of impostor representations for virtual humans and buildings. Computer Graphics Forum 24, 623–633(11) (2005)Google Scholar
  11. 11.
    Ijaz, K., Sohail, S., Hashish, S.: A survey of latest approaches for crowd simulation and modeling using hybrid techniques. In: 17th UKSIMAMSS International Conference on Modelling and Simulation, pp. 111–116 (2015)Google Scholar
  12. 12.
    Izquierdo Torrent, M.: Improving image-based rendering for crowds and perceptual evaluation. Master’s thesis (2014)Google Scholar
  13. 13.
    Jarabo, A., Eyck, T.V., Sundstedt, V., Bala, K., Gutierrez, D., O’Sullivan, C.: Crowd light: evaluating the perceived fidelity of illuminated dynamic scenes. Comput. Graph. Forum 31(2pt3), 565–574 (2012).  https://doi.org/10.1111/j.1467-8659.2012.03057.x CrossRefGoogle Scholar
  14. 14.
    Johansson, G.: Visual perception of biological motion and a model for its analysis. Percept. Psychophys. 14(2), 201–211 (1973).  https://doi.org/10.3758/BF03212378 CrossRefGoogle Scholar
  15. 15.
    Kulpa, R., Olivier, A., Ondřej, J., Pettré, J.: Imperceptible relaxation of collision avoidance constraints in virtual crowds. ACM Trans. Graph. 30(6), 138:1–138:10 (2011)CrossRefGoogle Scholar
  16. 16.
    Kuwahara, M., Sato, T., Yotsumoto, Y.: Wriggling motion trajectory illusion. J. Vis. 12(12), 1–14 (2012)CrossRefGoogle Scholar
  17. 17.
    McDonnell, R., Larkin, M., Dobbyn, S., Collins, S., O’Sullivan, C.: Clone attack! perception of crowd variety. ACM Trans. Graph. 27(3), 26:1–26:8 (2008).  https://doi.org/10.1145/1360612.1360625 CrossRefGoogle Scholar
  18. 18.
    McDonnell, R., Larkin, M., Hernández, B., Rudomin, I., O’Sullivan, C.: Eye-catching crowds: saliency based selective variation. ACM Trans. Graph. 28(3), 55:1–55:10 (2009).  https://doi.org/10.1145/1531326.1531361 CrossRefGoogle Scholar
  19. 19.
    McDonnell, R., Newell, F., O’Sullivan, C.: Smooth movers: Perceptually guided human motion simulation. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’07, pp. 259–269. Eurographics Association, Aire-la-Ville, Switzerland (2007). http://dl.acm.org/citation.cfm?id=1272690.1272726
  20. 20.
    McHugh, J.E., McDonnell, R., O’Sullivan, C., Newell, F.N.: Perceiving emotion in crowds: the role of dynamic body postures on the perception of emotion in crowded scenes. Exp Brain Res 204(3), 361–372 (2009).  https://doi.org/10.1007/s00221-009-2037-5 CrossRefGoogle Scholar
  21. 21.
    Peters, C., Ennis, C.: Modeling groups of plausible virtual pedestrians. IEEE Comput. Graph. Appl. 29(4), 54–63 (2009).  https://doi.org/10.1109/MCG.2009.69 CrossRefGoogle Scholar
  22. 22.
    Ryder, G., Day, A.M.: Survey of real-time rendering techniques for crowds. Comput. Graph. Forum 24(2), 203–215 (2005)CrossRefGoogle Scholar
  23. 23.
    Thalmann, D., Grillon, H., Maim, J., Yersin, B.: Challenges in crowd simulation. In: International Conference on CyberWorlds, pp. 1–12. IEEE Computer Society, Bradford (2009)Google Scholar
  24. 24.
    Thalmann, N., Thalmann, D.: Virtual humans: thirty years of research, what next? Vis. Comput. 21(12), 997–1015 (2005)CrossRefGoogle Scholar
  25. 25.
    Xu, M.L., Jiang, H., Jin, X.G., Deng, Z.: Crowd simulation and its applications: recent advances. J. Comput. Sci. Technol. 29(5), 799–811 (2014).  https://doi.org/10.1007/s11390-014-1469-y CrossRefGoogle Scholar
  26. 26.
    Yarbus, A.L.: Eye Movements and Vision. Plenum, New York (1967)CrossRefGoogle Scholar
  27. 27.
    Zhou, S., Chen, D., Cai, W., Luo, L., Low, M.Y.H., Tian, F., Tay, V.S.H., Ong, D.W.S., Hamilton, B.D.: Crowd modeling and simulation technologies. ACM Trans. Model. Comput. Simul. 20(4), 20:1–20:35 (2010).  https://doi.org/10.1145/1842722.1842725 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Oner Barut
    • 1
    Email author
  • Murat Haciomeroglu
    • 2
  • Ebru Akcapinar Sezer
    • 1
  1. 1.Department of Computer EngineeringHacettepe UniversityAnkaraTurkey
  2. 2.Department of Computer EngineeringGazi UniversityAnkaraTurkey

Personalised recommendations