The Visual Computer

, Volume 35, Issue 5, pp 739–751 | Cite as

Visualizing large graphs by layering and bundling graph edges

  • Zhuang Cai
  • Kang ZhangEmail author
  • Dong-Ni Hu
Original Article


Edge bundling has been widely used to reduce visual clutter and reveal high-level edge patterns for large graphs. Due to strong edge attraction, bundled results often show unnecessary curvature and tangling at bundle intersections. Inappropriate bundling may fail to reveal true data patterns and even mislead users. This paper presents a parameterizable 6-step edge bundling approach called LEB that reveals the patterns of the input graph, with distinguishable and traceable bundles. The bundling results by LEB are also adjustable by tuning a small number of parameters. We have conducted a user experiment to test and compare LEB with previous approaches. The experiment on three datasets (including two common ones) demonstrates LEB’s superiority over previous approaches in visualizing data patterns. Our implementation with reusable computation also delivers an execution speed fast enough for real-time interaction and animation.


Graph visualization Visual clutter Edge bundling Edge routing Layered approach Evaluation 


  1. 1.
    Cui, W., Zhou, H., Qu, H., Wong, P.C., Li, X.: Geometry-based edge clustering for graph visualization. IEEE Trans. Vis. Comput. Graph. 14(6), 1277–1284 (2008)Google Scholar
  2. 2.
    Dechter, R., Pearl, J.: Generalized best-first search strategies and the optimality of A*. J. ACM (JACM) 32(3), 505–536 (1985)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Doane, D.P.: Aesthetic frequency classifications. Am. Stat. 30(4), 181–183 (1976)MathSciNetGoogle Scholar
  4. 4.
    Ellis, G., Dix, A.: A taxonomy of clutter reduction for information visualisation. IEEE Trans. Vis. Comput. Graph. 13(6), 1216–1223 (2007)Google Scholar
  5. 5.
    Ersoy, O., Hurter, C., Paulovich, F.V., Cantareiro, G., Telea, A.: Skeleton-based edge bundling for graph visualization. IEEE Trans. Vis. Comput. Graph. 17(12), 2364–2373 (2011)Google Scholar
  6. 6.
    EXCEL 2007: Histogram, (2015)Google Scholar
  7. 7.
    Freedman, D., Diaconis, P.: On the histogram as a density estimator: L2 theory. Probab. Theory Relat. Fields 57(4), 453–476 (1981)zbMATHGoogle Scholar
  8. 8.
    Fua, Y.-H., Ward, M. O., Rundensteiner, E. A.: Hierarchical parallel coordinates for exploration of large datasets. In: Proceedings of Visualization’99, pp. 43–50. IEEE Computer Society Press (1999)Google Scholar
  9. 9.
    Gansner, E. R., Hu, Y., North, S., Scheidegger, C.: Multilevel agglomerative edge bundling for visualizing large graphs. In: IEEE Pacific Visualization Symposium (PacificVis), pp. 187–194. IEEE (2011)Google Scholar
  10. 10.
    Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)Google Scholar
  11. 11.
    Hartuv, E., Shamir, R.: A clustering algorithm based on graph connectivity. Inf. Process. Lett. 76(4), 175–181 (2000)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Healey, C. G.: Choosing effective colours for data visualization. In: Proceedings of Visualization’96, pp. 263–270. IEEE (1996)Google Scholar
  13. 13.
    Holten, D.: Hierarchical edge bundles: visualization of adjacency relations in hierarchical data. IEEE Trans. Vis. Comput. Graph. 12(5), 741–748 (2006)Google Scholar
  14. 14.
    Holten, D., Van Wijk, J. J.: Force-directed edge bundling for graph visualization. In: Computer Graphics Forum, vol. 28, pp. 983–990. Wiley (2009)Google Scholar
  15. 15.
    Hurter, C., Ersoy, O., Telea, A.: Graph bundling by kernel density estimation. In: Computer Graphics Forum, vol. 31, pp. 865–874. Wiley (2012)Google Scholar
  16. 16.
    Koenig, S., Likhachev, M., Liu, Y., Furcy, D.: Incremental heuristic search in AI. AI Mag. 25(2), 99 (2004)Google Scholar
  17. 17.
    Lambert, A., Bourqui, R., Auber, D.: Winding roads: routing edges into bundles. In: Computer Graphics Forum, vol. 29, pp. 853–862. Wiley (2010)Google Scholar
  18. 18.
    Lee, B., Plaisant, C., Parr, C. S., Fekete, J.-D., Henry, N.: Task taxonomy for graph visualization. In: Proceedings of the 2006 AVI Workshop on BEyond Time and Errors: Novel Evaluation Methods for Information Visualization, pp. 1–5. ACM (2006)Google Scholar
  19. 19.
    Leung, Y.K., Apperley, M.D.: A review and taxonomy of distortion-oriented presentation techniques. ACM Trans. Comput–Human Interact. (TOCHI) 1(2), 126–160 (1994)Google Scholar
  20. 20.
    Liu, S., Cui, W., Wu, Y., Liu, M.: A survey on information visualization: recent advances and challenges. Vis. Comput. 30(12), 1373–1393 (2014)Google Scholar
  21. 21.
    Luo, S.-J., Liu, C.-L., Chen, B.-Y., Ma, K.-L.: Ambiguity-free edge-bundling for interactive graph visualization. IEEE Trans. Vis. Comput. Graph. 18(5), 810–821 (2012)Google Scholar
  22. 22.
    McDonnell, K. T., Mueller, K.: Illustrative parallel coordinates. In: Computer Graphics Forum, vol. 27, pp. 1031–1038. Wiley (2008)Google Scholar
  23. 23.
    Nguyen, Q., Hong, S.-H., Eades, P.: TGI-EB: a new framework for edge bundling integrating topology, geometry and importance. In: Graph Drawing, pp. 123–135. Springer (2012)Google Scholar
  24. 24.
    Peng, D., Lu, N., Chen, W., Peng, Q.: SideKnot: revealing relation patterns for graph visualization. In: IEEE Pacific Visualization Symposium 2012 (PacificVIS), pp. 65–72. IEEE (2012)Google Scholar
  25. 25.
    Peng, W., Ward, M. O., Rundensteiner, E. A.: Clutter reduction in multi-dimensional data visualization using dimension reordering. In: IEEE Symposium on Information Visualization 2004 (INFOVIS 2004), pp. 89–96. IEEE (2004)Google Scholar
  26. 26.
    Phan, D., Xiao, L., Yeh, R., Hanrahan, P.: Flow map layout. In: IEEE Symposium on Information Visualization 2005 (INFOVIS 2005), pp. 219–224. IEEE (2005)Google Scholar
  27. 27.
    Pupyrev, S., Nachmanson, L., Bereg, S., Holroyd, A. E.: Edge routing with ordered bundles. In: Graph Drawing, pp. 136–147. Springer (2012)Google Scholar
  28. 28.
    Qu, H., Zhou, H., Wu, Y.: Controllable and progressive edge clustering for large networks. In: Graph Drawing, pp. 399–404. Springer (2007)Google Scholar
  29. 29.
    Selassie, D., Heller, B., Heer, J.: Divided edge bundling for directional network data. IEEE Trans. Vis. Comput. Graph. 17(12), 2354–2363 (2011)Google Scholar
  30. 30.
    Shimazaki, H., Shinomoto, S.: A method for selecting the bin size of a time histogram. Neural Comput. 19(6), 1503–1527 (2007)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Sturges, H.A.: The choice of a class interval. J. Am. Stat. Assoc. 21(153), 65–66 (1926)Google Scholar
  32. 32.
    Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Telea, A., Ersoy, O.: Image-based edge bundles: simplified visualization of large graphs. In: Computer Graphics Forum, vol. 29, pp. 843–852. Wiley (2010)Google Scholar
  34. 34.
    Tennekes, M., de Jonge, E.: Tree colors: color schemes for tree-structured data. IEEE Trans. Vis. Comput. Graph. 20(12), 2072–2081 (2014)Google Scholar
  35. 35.
    Verbeek, K., Buchin, K., Speckmann, B.: Flow map layout via spiral trees. IEEE Trans. Vis. Comput. Graph. 17(12), 2536–2544 (2011)Google Scholar
  36. 36.
    Wong, N., Carpendale, S., Greenberg, S.: Edgelens: an interactive method for managing edge congestion in graphs. In: IEEE Symposium on Information Visualization 2003 (INFOVIS 2003), pp. 51–58. IEEE (2003)Google Scholar
  37. 37.
    Zhou, H., Xu, P., Yuan, X., Qu, H.: Edge bundling in information visualization. Tsinghua Sci. Technol. 18(2), 145–156 (2013)Google Scholar
  38. 38.
    Zhou, H., Yuan, X., Cui, W., Qu, H., Chen, B.: Energy-based hierarchical edge clustering of graphs. In: IEEE Pacific Visualization Symposium 2008 (PacificVIS), pp. 55–61. IEEE (2008)Google Scholar
  39. 39.
    Zhou, H., Yuan, X., Qu, H., Cui, W., Chen, B.: Visual clustering in parallel coordinates. In: Computer Graphics Forum, vol. 27, pp. 1047–1054. Wiley (2008)Google Scholar
  40. 40.
    Zinsmaier, M., Brandes, U., Deussen, O., Strobelt, H.: Interactive level-of-detail rendering of large graphs. IEEE Trans. Vis. Comput. Graph. 18(12), 2486–2495 (2012)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Computer SoftwareTianjin UniversityTianjinChina
  2. 2.Department of Computer ScienceThe University of Texas at DallasRichardsonUSA
  3. 3.Faculty of Information TechnologyMacau University of Science and TechnologyMacauChina

Personalised recommendations