Advertisement

The Visual Computer

, Volume 34, Issue 10, pp 1415–1426 | Cite as

Intermediate shadow maps for interactive many-light rendering

  • Lili WangEmail author
  • Wenhao Zhang
  • Nian Li
  • Boning Zhang
  • Voicu Popescu
Original Article
  • 291 Downloads

Abstract

We present an efficient method for computing shadows for many light sources (e.g., 1024). Our work is based on the observation that conventional shadow mapping becomes redundant as the number of lights increases. First, we sample the scene with a constant number of depth images (e.g., 10), which we call intermediate shadow maps. Then the shadow map for each light is approximated by rendering triangles reconstructed from the intermediate shadow maps. The cost of rendering these triangles is much smaller than rendering the original geometry of a complex scene. The algorithm supports fully dynamic scenes. Our results show that our method can produce soft shadows comparable to those obtained by conventional shadow mapping for each light source or by ray tracing, but at a higher frame rate.

Keywords

Many lights Visibility Shadow mapping 

Notes

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China through Projects 61272349, 61190121 and 61190125 and by the National High Technology Research and Development Program of China through 863 Program No.2013AA01A604.

Supplementary material

Supplementary material 1 (mp4 46329 KB)

References

  1. 1.
  2. 2.
    Simplygon. https://www.simplygon.com/ (2016)
  3. 3.
    Akerlund, O., Unger, M., Wang, R.: Precomputed visibility cuts for interactive relighting with dynamic brdfs. In: Conference on Computer Graphics and Applications, pp. 161–170 (2007)Google Scholar
  4. 4.
    Cheslack-Postava, E., Wang, R., Akerlund, O., Pellacini, F.: Fast, realistic lighting and material design using nonlinear cut approximation. ACM Trans. Graph. 27(5), 32–39 (2008)CrossRefGoogle Scholar
  5. 5.
    Dachsbacher, C., Křivánek, J., Hašan, M., Arbree, A., Walter, B., Novák, J.: Scalable realistic rendering with many-light methods. In: Sbert, M., Szirmay-Kalos, L. (eds.) Computer Graphics Forum, vol. 33, pp. 88–104. Wiley Online Library (2014)Google Scholar
  6. 6.
    Davidovič, T., Křivánek, J., Hašan, M., Slusallek, P., Bala, K.: Combining global and local virtual lights for detailed glossy illumination. ACM Trans. Graph. 29(6), 143:1–143:8 (2010).  https://doi.org/10.1145/1882261.1866169
  7. 7.
    Dong, Z., Grosch, T., Ritschel, T., Kautz, J., Seidel, H.P.: Real-time indirect illumination with clustered visibility. In: Proceedings of the Vision, Modeling, and Visualization Workshop 2009, November 16–18, 2009, Braunschweig, Germany, pp. 187–196 (2009)Google Scholar
  8. 8.
    Feris, R., Raskar, R., Tan, K.H., Turk, M.: Specular reflection reduction with multi-flash imaging. In: Proceedings of the Computer Graphics and Image Processing, XVII Brazilian Symposium, SIBGRAPI ’04, pp. 316–321, Washington, DC, IEEE Computer Society (2004)Google Scholar
  9. 9.
    Hašan, M., Pellacini, F., Bala, K.: Matrix row-column sampling for the many-light problem. ACM Trans. Graph. 26(3), 26 (2007).  https://doi.org/10.1145/1276377.1276410
  10. 10.
    Holländer, M., Ritschel, T., Eisemann, E., Boubekeur, T.: ManyLoDs: parallel many-view level-of-detail selection for real-time global illumination. Comput. Graph. Forum 30(4), 1233–1240 (2011).  https://doi.org/10.1111/j.1467-8659.2011.01982.x
  11. 11.
    Huo, Y., Wang, R., Jin, S., Liu, X., Bao, H.: A matrix sampling-and-recovery approach for many-lights rendering. ACM Trans. Graph. (TOG) 34(6), 210 (2015)CrossRefGoogle Scholar
  12. 12.
    Kristensen, A.W., Akenine-Möller, T., Jensen, H.W.: Precomputed local radiance transfer for real-time lighting design. ACM Trans. Graph. 24(3), 1208–1215 (2005)CrossRefGoogle Scholar
  13. 13.
    Nichols, G., Penmatsa, R., Wyman, C.: Interactive, multiresolution image-space rendering for dynamic area lighting. In: Lawrence, J., Stamminger, M. (eds.) Computer Graphics Forum, vol. 29, pp. 1279–1288. Wiley Online Library (2010)Google Scholar
  14. 14.
    Oliveira, M.M., Bishop, G., McAllister, D.: Relief texture mapping. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’00, pp. 359–368. ACM Press, New York (2000)Google Scholar
  15. 15.
    Olsson, O., Billeter, M., Sintorn, E., Kampe, V., Assarsson, U.: More efficient virtual shadow maps for many lights . IEEE Trans. Vis. Comput. Graph. 21(6), 701–713 (2015).  https://doi.org/10.1109/TVCG.2015.2418772
  16. 16.
    Olsson, O., Sintorn, E., Kämpe, V., Billeter, M., Assarsson, U.: Efficient virtual shadow maps for many lights. In: Proceedings of the 18th Meeting of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, pp. 87–96. ACM (2014)Google Scholar
  17. 17.
    Paquette, E., Poulin, P., Drettakis, G.: A light hierarchy for fast rendering of scenes with many lights. In: Ferreira, N., Göbel, M. (eds.) Computer Graphics Forum, vol. 17, pp. 63–74. Wiley Online Library (1998)Google Scholar
  18. 18.
    Popescu, V., Eyles, J., Lastra, A., Steinhurst, J., England, N., Nyland, L.: The warpengine: an architecture for the post-polygonal age. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2000, New Orleans, 23–28 July 2000, pp. 433–442 (2000)Google Scholar
  19. 19.
    Ritschel, T., Engelhardt, T., Grosch, T., Seidel, H.P., Kautz, J., Dachsbacher, C.: Micro-rendering for scalable, parallel final gathering. ACM Trans. Graph. 28(5), 89–97 (2009)Google Scholar
  20. 20.
    Ritschel, T., Grosch, T., Kim, M.H., Seidel, H.P., Dachsbacher, C., Kautz, J.: Imperfect shadow maps for efficient computation of indirect illumination. ACM Trans. Graph. 27(5), 32–39 (2008)CrossRefGoogle Scholar
  21. 21.
    Ritschel, T., Grosch, T., Kautz, J., Eller, S.: Interactive illumination with coherent shadow maps. In Proceedings of the EGSR 2007, pp. 61–72 (2007)Google Scholar
  22. 22.
    Ritschel, T., Grosch, T., Kautz, J., Seidel, H.P.: Interactive global illumination based on coherent surface shadow maps. In: Proceedings of Graphics Interface 2008 (2008)Google Scholar
  23. 23.
    Walter, B., Fernandez, S., Arbree, A., Bala, K., Donikian, M., Greenberg, D.P.: Lightcuts: a scalable approach to illumination. ACM Trans. Graph. 24(3), 1098–1107 (2005)CrossRefGoogle Scholar
  24. 24.
    Walter, B., Khungurn, P., Bala, K.: Bidirectional lightcuts. ACM Trans. Graph. 31(4), 13–15 (2012)CrossRefGoogle Scholar
  25. 25.
    Wang, R., Huo, Y., Yuan, Y., Zhou, K., Hua, W., Bao, H.: Gpu-based out-of-core many-lights rendering. ACM Trans. Graph. (TOG) 32(6), 210 (2013)Google Scholar
  26. 26.
    Wu, Y.T., Chuang, Y.Y.: Visibilitycluster: average directional visibility for many-light rendering. IEEE Trans. Vis. Comput. Graph. 19(9), 1566–1578 (2013)CrossRefGoogle Scholar
  27. 27.
    Yang, T., Hui-zhong, W., Fu, X., Liang, X.: Inverse image warping without searching. In: International Conference on Control, Automation, Robotics and Vision, pp. 386–390 (2004)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Lili Wang
    • 1
    Email author
  • Wenhao Zhang
    • 1
  • Nian Li
    • 1
  • Boning Zhang
    • 1
  • Voicu Popescu
    • 2
  1. 1.State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and EngineeringBeihang UniversityBeijingChina
  2. 2.Purdue UniversityWest LafayetteUSA

Personalised recommendations