The Visual Computer

, Volume 33, Issue 6–8, pp 1017–1027 | Cite as

Data-driven modeling and animation of outdoor trees through interactive approach

  • Shaojun HuEmail author
  • Zhiyi Zhang
  • Haoran Xie
  • Takeo Igarashi
Original Article


Computer animation of trees has widespread applications in the fields of film production, video games and virtual reality. Physics-based methods are feasible solutions to achieve good approximations of tree movements. However, realistically animating a specific tree in the real world remains a challenge since physics-based methods rely on dynamic properties that are difficult to measure. In this paper, we present a low-cost interactive approach to model and animate outdoor trees from photographs and videos, which can be captured using a smartphone or handheld camera. An interactive editing approach is proposed to reconstruct detailed branches from photographs by considering an epipolar constraint. To track the motions of branches and leaves, a semi-automatic tracking method is presented to allow the user to interactively correct mis-tracked features. Then, the physical parameters of branches and leaves are estimated using a fast Fourier transform, and these properties are applied to a simplified physics-based model to generate animations of trees with various external forces. We compare the animation results with reference videos on several examples and demonstrate that our approach can achieve realistic tree animation.


Tree Modeling Animation Data-driven Interactive Video 



We thank Hironori Yoshida, Seung-tak Noh and the anonymous reviewers. This work was supported by NSFC [61303124], National 863 Plan [2013AA102304 02] and NSBR Plan of Shaanxi [2015JQ6250].

Supplementary material

Supplementary material 1 (mp4 53834 KB)


  1. 1.
    Quan, L., Tan, P., Zeng, G., Yuan, L., Wang, J., Kang, S.B.: Image-based plant modeling. ACM Trans. Graph. 25(3), 599–604 (2006)CrossRefGoogle Scholar
  2. 2.
    Tan, P., Zeng, G., Wang, J., Kang, S.B., Quan, L.: Image-based tree modeling. ACM Trans. Graph. 26(3), 87 (2007)CrossRefGoogle Scholar
  3. 3.
    Livny, Y., Pirk, S., Cheng, Z., Yan, F., Deussen, O., Cohen-Or, D., Chen, B.: Texture-lobes for tree modelling. ACM Trans. Graph. 30(4), 53:1–53:10 (2011)CrossRefGoogle Scholar
  4. 4.
    Akagi, Y., Kitajima, K.: Computer animation of swaying trees based on physical simulation. Comput. Graph. 30(4), 529–539 (2006)CrossRefGoogle Scholar
  5. 5.
    Diener, J., Rodriguez, M., Baboud, L., Reveret, L.: Wind projection basis for real-time animation of trees. Comput. Graph. Forum 28(2), 533–540 (2009)Google Scholar
  6. 6.
    Habel, R., Kusternig, A., Wimmer, M.: Physically guided animation of trees. Comput. Graph. Forum 28(2), 523–532 (2009)CrossRefGoogle Scholar
  7. 7.
    Hu, S., Chiba, N., He, D.: Realistic animation of interactive trees. Vis. Comput. 28(6–8), 859–868 (2012)CrossRefGoogle Scholar
  8. 8.
    Pirk, S., Niese, T., Hädrich, T., Benes, B., Deussen, O.: Windy trees: computing stress response for developmental tree models. ACM Trans. Graph. 33(6), 1–11 (2014)CrossRefGoogle Scholar
  9. 9.
    Diener, J., Reveret, L., Fiume, E.: Hierarchical retargetting of 2d motion fields to the animation of 3d plant models. In: Proceedings of the 2006 ACM SCA, pp. 187–195. Switzerland (2006)Google Scholar
  10. 10.
    Li, C., Deussen, O., Song, Y.-Z., Willis, P., Hall, P.: Modeling and generating moving trees from video. ACM Trans. Graph. 30(6), 127 (2011)CrossRefGoogle Scholar
  11. 11.
    James, K.R., Haritos, N., Ades, P.K.: Mechanical stability of trees under dynamic loads. Am. J. Bot. 93(10), 1522–1530 (2006)CrossRefGoogle Scholar
  12. 12.
    Deussen, O., Lintermann, B.: Digital Design of Nature: Computer Generated Plants and Organics. Springer, New York (2005)Google Scholar
  13. 13.
    Shinya, M., Fournier, A.: Stochastic motion–motion under the influence of wind. Comput. Graph. Forum 11(3), 119–128 (1992)CrossRefzbMATHGoogle Scholar
  14. 14.
    Stam, J.: Stochastic dynamics: simulating the effects of turbulence on flexible structures. Comput. Graph. Forum 16(3), 159–164 (1997)CrossRefGoogle Scholar
  15. 15.
    Pirk, S., Niese, T., Deussen, O., Neubert, B.: Capturing and animating the morphogenesis of polygonal tree models. ACM Trans. Graph. 31(6), 169:1–169:10 (2012)CrossRefGoogle Scholar
  16. 16.
    Debevec, P.E., Taylor, C.J., Malik, J.: Modeling and rendering architecture from photographs: a hybrid geometry- and image-based approach. SIGGRAPH ’96, pp. 11–20. New York, USA, (1996)Google Scholar
  17. 17.
    Sakaguchi, T., Ohya, J.: Modeling and animation of botanical trees for interactive virtual environments. In: Proceedings of the ACM Symposium on VRST, pp. 139–146. New York, USA (1999)Google Scholar
  18. 18.
    Ota, S., Tamura, M., Fujimoto, T., Muraoka, K., Chiba, N.: A hybrid method for real-time animation of trees swaying in wind fields. Vis. Comput. 20(10), 613–623 (2004)CrossRefGoogle Scholar
  19. 19.
    Sun, M., Jepson, D.A., Fiume, E.: Video input driven animation (vida). In: 9th IEEE international conference on computer vision, pp. 96–103. Nice, France, IEEE (2003)Google Scholar
  20. 20.
    Long, J., Porter, B., Jones, M.: Animation of trees in wind using sparse motion capture data. Vis. Comput. 31(3), 325–339 (2015)CrossRefGoogle Scholar
  21. 21.
    Wang, B., Wu, L., Yin, K.K., Ascher, U., Liu, L., Huang, H.: Deformation capture and modeling of soft objects. ACM Trans. Graph. 34(4), 1–12 (2015)Google Scholar
  22. 22.
    Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3d. ACM Trans. Graph. 25(3), 835–846 (2006)CrossRefGoogle Scholar
  23. 23.
    Furukawa, Y., Ponce, J.: Accurate, dense, and robust multiview stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1362–1376 (2010)CrossRefGoogle Scholar
  24. 24.
    Py, C., de Langre, E., Moulia, B.: A frequency lock-in mechanism in the interaction between wind and crop canopies. J. Fluid Mech. 568, 425–449 (2006)CrossRefzbMATHGoogle Scholar
  25. 25.
    Shi, J., Tomasi, C.: Good features to track. In: 1994 Proceedings of IEEE CVPR, pp. 593–600. Jun (1994)Google Scholar
  26. 26.
    Bouguet, J.-Y.: Pyramidal implementation of the lucas kanade feature tracker. Intel Corporation, Microprocessor Research Labs (2000)Google Scholar
  27. 27.
    Olmos, B.A., Roesset, J.M.: Evaluation of the half-power bandwidth method to estimate damping in systems without real modes. Earthq. Eng. Struct. Dyn. 39(14), 1671–1686 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Shaojun Hu
    • 1
    Email author
  • Zhiyi Zhang
    • 1
  • Haoran Xie
    • 2
  • Takeo Igarashi
    • 2
  1. 1.College of Information EngineeringNorthwest A&F UniversityXianyangChina
  2. 2.Graduate School of Information Science and TechnologyThe University of TokyoTokyoJapan

Personalised recommendations