The Visual Computer

, Volume 32, Issue 6–8, pp 791–800 | Cite as

Direct raytracing of a closed-form fluid meniscus

  • D. MorgenrothEmail author
  • D. Weiskopf
  • B. Eberhardt
Original Article


We present a direct raytracing method for implicitly described fluid surfaces that takes into account the effects of capillary solid coupling at the boundaries. The method is independent of the underlying fluid simulation method and solely based on distance fields. We make use of the closed-form solution of the meniscus shape at the fluid interface to achieve the effect of surface tension exerted by the solid object. The shape of the liquid at these boundaries is influenced by various physical properties such as the force of gravity and the affinity between the liquid and the solid material. We generate contact angles at the boundaries without the need for computationally intensive small-scale simulation. At render time, we combine the closed-form solution for a small-scale effect with the numerical solution of a large-scale simulation. Our method is applicable for any implicit representation of the fluid surface and does not require an explicit extraction of the surface geometry. Therefore, it is especially useful for particle-based simulations. Furthermore, the solution is guaranteed to yield the correct contact angle and, for certain scenarios, it delivers the entirely correct solution throughout the interface; even in general scenarios, it yields plausible results. As for an example, we implemented and tested the proposed method in the setting of a smoothed particle hydrodynamics (SPH) fluid simulation.


Raytracing Implicit surfaces Fluid meniscus Smoothed particle hydrodynamics Displacement mapping 



This work was supported by “Kooperatives Promotionskolleg Digital Media” at Stuttgart Media University and the University of Stuttgart.

Supplementary material

Supplementary material 1 (mp4 35062 KB)


  1. 1.
    Adams, B., Pauly, M., Keiser, R., Guibas, L.J.: Adaptively sampled particle fluids. ACM Trans. Graph. 26(3), 48:1–48:7 (2007)CrossRefGoogle Scholar
  2. 2.
    Bærentzen, J.A., Aanæs, H.: Generating signed distance fields from triangle meshes. Tech. Rep. IMM-TR-2002-21, Informatics and Mathematical Modelling, Technical University of Denmark (2002)Google Scholar
  3. 3.
    Bourque, E., Dufort, J.F., Laprade, M., Poulin, P., Chiba, N.: Simulating caustics due to liquid-solid interface menisci. In: Proceedings of the Second Eurographics Conference on Natural Phenomena, pp. 33–40 (2006)Google Scholar
  4. 4.
    Clausen, P., Wicke, M., Shewchuk, J.R., O’Brien, J.F.: Simulating liquids and solid–liquid interactions with Lagrangian meshes. ACM Trans. Graph. 32(2), 17:1–17:15 (2013)CrossRefzbMATHGoogle Scholar
  5. 5.
    Deserno, M.: The shape of a straight fluid meniscus (2004).
  6. 6.
    Fournier, P., Habibi, A., Poulin, P.: Simulating the flow of liquid droplets. In: Proceedings of the Graphics Interface 1998 Conference, pp. 133–142 (1998)Google Scholar
  7. 7.
    Fraedrich, R., Auer, S., Westermann, R.: Efficient high-quality volume rendering of SPH data. IEEE Trans. Vis. Comput. Graph. 16(6), 1533–1540 (2010)CrossRefGoogle Scholar
  8. 8.
    Gourmel, O., Barthe, L., Cani, M.P., Wyvill, B., Bernhardt, A., Paulin, M., Grasberger, H.: A gradient-based implicit blend. ACM Trans. Graph. 32(2), 12:1–12:13 (2013)CrossRefzbMATHGoogle Scholar
  9. 9.
    Gourmel, O., Pajot, A., Paulin, M., Barthe, L., Poulin, P.: Fitted BVH for fast raytracing of metaballs. Comput. Graph. Forum 29(2), 281–288 (2010)CrossRefGoogle Scholar
  10. 10.
    Hart, J.C.: Ray tracing implicit surfaces. ACM SIGGRAPH 93 Course Notes: Design, Visualization and Animation of Implicit Surfaces, pp. 1–16 (1993)Google Scholar
  11. 11.
    Huber, M., Eberhardt, B., Weiskopf, D.: Boundary handling at cloth-fluid contact. Comput. Graph. Forum 34(1), 14–25 (2015)CrossRefGoogle Scholar
  12. 12.
    Jung, Y., Behr, J.: GPU-based real-time on-surface droplet flow in X3D. In: Proceedings of the 14th International Conference on 3D Web Technology, pp. 51–54. ACM (2009)Google Scholar
  13. 13.
    Kaneda, K., Ikeda, S., Yamashita, H.: Animation of water droplets moving down a surface. J. Vis. Comput. Animat. 10(1), 15–26 (1999)CrossRefGoogle Scholar
  14. 14.
    Kaneda, K., Kagawa, T., Yamashita, H.: Animation of water droplets on a glass plate. In: Proceedings of Computer Animation, pp. 177–189 (1993)Google Scholar
  15. 15.
    Lautrup, B.: Physics of Continuous Matter: Exotic and Everyday Phenomena in the Macroscopic World. Institute of Physics Publishing, Bristol (2005)zbMATHGoogle Scholar
  16. 16.
    Liu, Y., Zhu, H., Liu, X., Wu, E.: Real-time simulation of physically based on-surface flow. Vis. Comput. 21(8–10), 727–734 (2005)CrossRefGoogle Scholar
  17. 17.
    Lock, J.A., Adler, C.L., Ekelman, D., Mulholland, J., Keating, B.: Analysis of the shadow-sausage effect caustic. Appl. Opt. 42(3), 418–428 (2003)CrossRefGoogle Scholar
  18. 18.
    Monaghan, J.J.: Smoothed particle hydrodynamics. Ann. Rev. Astron. Astrophys. 30, 543–574 (1992)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Museth, K.: VDB: high-resolution sparse volumes with dynamic topology. ACM Trans. Graph. 32(3), 27:1–27:22 (2013)CrossRefzbMATHGoogle Scholar
  20. 20.
    Nakata, N., Kakimoto, M., Nishita, T.: Animation of water droplets on a hydrophobic windshield. In: WSCG Conference Proceedings, pp. 95–103 (2012)Google Scholar
  21. 21.
    Singh, J.M., Narayanan, P.: Real-time ray tracing of implicit surfaces on the GPU. IEEE Trans. Vis. Comput. Graph. 16(2), 261–272 (2010)CrossRefGoogle Scholar
  22. 22.
    Solenthaler, B., Schläfli, J., Pajarola, R.: A unified particle model for fluid–solid interactions. Comput. Animat. Virtual Worlds 18(1), 69–82 (2007)CrossRefGoogle Scholar
  23. 23.
    Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. 4. Publish or Perish, Houston (1999)zbMATHGoogle Scholar
  24. 24.
    Stuppacher, I., Supan, P.: Rendering of water drops in real-time. In: Central European Seminar on Computer Graphics for Students (2007)Google Scholar
  25. 25.
    Szirmay-Kalos, L., Umenhoffer, T.: Displacement mapping on the GPU—state of the art. Comput. Graph. Forum 27(6), 1567–1592 (2008)Google Scholar
  26. 26.
    Takenaka, S., Mizukami, Y., Tadamura, K.: A fast rendering method for water droplets on glass surfaces. In: The 23rd International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), pp. 13–16 (2008)Google Scholar
  27. 27.
    Wang, H., Mucha, P.J., Turk, G.: Water drops on surfaces. ACM Trans. Graph. 24(3), 921–929 (2005)CrossRefGoogle Scholar
  28. 28.
    Young, T.: An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65–87 (1805)CrossRefGoogle Scholar
  29. 29.
    Yu, J., Turk, G.: Reconstructing surfaces of particle-based fluids using anisotropic kernels. ACM Trans. Graph. 32(1), 5:1–5:12 (2013)CrossRefzbMATHGoogle Scholar
  30. 30.
    Yu, Y.J., Jung, H.Y., Cho, H.G.: A new water droplet model using metaball in the gravitational field. Comput. Graph. 23(2), 213–222 (1999)CrossRefGoogle Scholar
  31. 31.
    Yuan, Y., Lee, T.R.: Contact angle and wetting properties. In: Bracco, G., Holst, B. (eds.) Surface Science Techniques, pp. 3–34. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  32. 32.
    Zhang, Y., Wang, H., Wang, S., Tong, Y., Zhou, K.: A deformable surface model for real-time water drop animation. IEEE Trans. Vis. Comput. Graph. 18(8), 1281–1289 (2012)CrossRefGoogle Scholar
  33. 33.
    Zhao, H.K., Merriman, B., Osher, S., Wang, L.: Capturing the behavior of bubbles and drops using the variational level set approach. J. Comput. Phys. 143(2), 495–518 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Zhu, Y., Bridson, R.: Animating sand as a fluid. ACM Trans. Graph. 24(3), 965–972 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Stuttgart Media UniversityStuttgartGermany
  2. 2.VISUS, University of StuttgartStuttgartGermany

Personalised recommendations