Advertisement

Simplification of meshes with digitized radiance

  • 167 Accesses

  • 4 Citations

Abstract

View-dependent surface color of virtual objects can be represented by outgoing radiance of the surface. In this paper we tackle the processing of outgoing radiance stored as a vertex attribute of triangle meshes. Data resulting from an acquisition process can be very large and computationally intensive to render. We show that when reducing the global memory footprint of such acquired objects, smartly reducing the spatial resolution is an effective strategy for overall appearance preservation. Whereas state-of-the-art simplification processes only consider scalar or vectorial attributes, we conversely consider radiance functions defined on the surface for which we derive a metric. For this purpose, several tools are introduced like coherent radiance function interpolation, gradient computation, and distance measurements. Both synthetic and acquired examples illustrate the benefit and the relevance of this radiance-aware simplification process.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Cabral, B., Olano, M., Nemec, P.: Reflection space image based rendering. In: Proceedings of SIGGRAPH ’99, pp. 165–170. ACM Press, New York (1999). doi:10.1145/311535.311553

  2. 2.

    Chen, W.C., Bouguet, J.Y., Chu, M.H., Grzeszczuk, R.: Light field mapping: efficient representation and hardware rendering of surface light fields. In: Proceedings of the 29th annual conference on computer graphics and interactive techniques, SIGGRAPH ’02, pp. 447–456. ACM, New York (2002). doi:10.1145/566570.566601

  3. 3.

    Choi, H., Kim, H., Lee, K.: An improved mesh simplification method using additional attributes with optimal positioning. Int. J. Adv. Manuf. Technol. 50(1–4), 235–252 (2010). doi:10.1007/s00170-009-2484-y

  4. 4.

    Cohen, J., Olano, M., Manocha, D.: Appearance-preserving simplification. In: Proceedings of SIGGRAPH ’98, pp. 115–122. ACM Press, New York (1998). doi:10.1145/280814.280832

  5. 5.

    Coombe, G., Hantak, C., Lastra, A., Grzeszczuk, R.: Online construction of surface light fields. In: Proceedings of the Sixteenth Eurographics Conference on Rendering, EGSR’05, pp. 83–90 (2005). doi:10.2312/EGWR/EGSR05/083-090

  6. 6.

    Do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Upper Saddle River (1976)

  7. 7.

    Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proceedings of SIGGRAPH ’97, pp. 209–216. ACM Press, New York (1997). doi:10.1145/258734.258849

  8. 8.

    Garland, M., Heckbert, P.S.: Simplifying surfaces with color and texture using quadric error metrics. In: Proceedings of the Conference on Visualization ’98. VIS ’98, pp. 263–269. IEEE Computer Society Press, Los Alamitos (1998)

  9. 9.

    González, C., Castelló, P., Chover, M.: A texture-based metric extension for simplification methods. In: Proceedings of the Second International Conference on Computer Graphics Theory and Applications (GRAPP), pp. 69–76 (2007)

  10. 10.

    Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The lumigraph. In: Proceedings of SIGGRAPH ’96, pp. 43–54. ACM Press, New York (1996). doi:10.1145/237170.237200

  11. 11.

    Hoppe, H.: Progressive meshes. In: Proceedings of SIGGRAPH ’96, pp. 99–108. ACM Press, New York (1996). doi:10.1145/237170.237216

  12. 12.

    Hoppe, H.: New quadric metric for simplifying meshes with appearance attributes. In: Proceedings of the 10th IEEE Visualization 1999 Conference (VIS ’99), VISUALIZATION ’99, pp. 59–66. IEEE Computer Society, Washington (1999)

  13. 13.

    Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the fourth Eurographics symposium on Geometry processing, SGP ’06, pp. 61–70 (2006)

  14. 14.

    Kim, C., Zimmer, H., Pritch, Y., Sorkine-Hornung, A., Gross, M.: Scene reconstruction from high spatio-angular resolution light fields. ACM Trans. Gr. 32(4), 73:1–73:12 (2013). doi:10.1145/2461912.2461926

  15. 15.

    Kim, H.S., Choi, H.K., Lee, K.H.: Mesh simplification with vertex color. In: Proceedings of the 5th international conference on Advances in geometric modeling and processing. GMP’08, pp. 258–271. Springer-Verlag, Berlin, Heidelberg (2008)

  16. 16.

    Kim, H.S., Choi, H.K., Lee, K.H.: Mesh simplification with vertex color. In: Proceedings of the 5th International Conference on Advances in Geometric Modeling and Processing, GMP’08, pp. 258–271. Springer, Berlin (2008)

  17. 17.

    Levoy, M., Hanrahan, P.: Light field rendering. In: Proceedings of SIGGRAPH ’96, pp. 31–42. ACM Press, New York (1996). doi:10.1145/237170.237199

  18. 18.

    MacRobert, T.M.: Spherical Harmonics: an Elementary Treatise on Harmonic Functions, with Applications. Dover Publications, New York (1948)

  19. 19.

    Malzbender, T., Gelb, D., Wolters, H.: Polynomial texture maps. In: Proceedings of SIGGRAPH ’01, pp. 519–528. ACM Press, New York (2001). doi:10.1145/383259.383320

  20. 20.

    Nishino, K., Sato, Y., Ikeuchi, K.: Eigen-texture method: appearance compression and synthesis based on a 3D model. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1257–1265 (2001). doi:10.1109/34.969116

  21. 21.

    Ray, N., Nivoliers, V., Lefebvre, S., Lévy, B.: Invisible seams. In: Proceedings of the 21st Eurographics Conference on Rendering, EGSR’10, pp. 1489–1496. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2010). doi:10.1111/j.1467-8659.2010.01746.x

  22. 22.

    Rusinkiewicz, S.: A new change of variables for efficient BRDF representation. In: Drettakis, G., Max, N. (eds.) Rendering Techniques ’98, Eurographics, pp. 11–22. Springer, Vienna (1998). doi:10.1007/978-3-7091-6453-2_2

  23. 23.

    Schröder, P., Sweldens, W.: Spherical wavelets: efficiently representing functions on the sphere. In: Proceedings of SIGGRAPH ’95, pp. 161–172. ACM Press, New York (1995). doi:10.1145/218380.218439

  24. 24.

    Vanhoey, K., Sauvage, B., Génevaux, O., Larue, F., Dischler, J.M.: Robust fitting on poorly sampled data for surface light field rendering and image relighting. Comput. Gr. Forum 32(6), 101–112 (2013). doi:10.1111/cgf.12073

  25. 25.

    Wood, D.N., Azuma, D.I., Aldinger, K., Curless, B., Duchamp, T., Salesin, D.H., Stuetzle, W.: Surface light fields for 3D photography. In: Proceedings of SIGGRAPH ’00, pp. 287–296. ACM Press, New York (2000). doi:10.1145/344779.344925

  26. 26.

    Wu, H., Dorsey, J., Rushmeier, H.: A sparse parametric mixture model for BTF compression: editing and rendering. Comput. Gr. Forum 30(2), 465–473 (2011). doi:10.1111/j.1467-8659.2011.01890.x

Download references

Acknowledgments

We thank Éric Heitz for the early-stage experiments that led to this work and Olivier Génevaux for his technical assistance.

Author information

Correspondence to Kenneth Vanhoey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (mpg 160630 KB)

Supplementary material 1 (pdf 2787 KB)

Supplementary material 2 (mpg 160630 KB)

Supplementary material 3 (pdf 17238 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vanhoey, K., Sauvage, B., Kraemer, P. et al. Simplification of meshes with digitized radiance. Vis Comput 31, 1011–1021 (2015) doi:10.1007/s00371-015-1124-9

Download citation

Keywords

  • Digitized artifacts
  • Surface light field
  • Radiance
  • Mesh simplification
  • Rendering