The Visual Computer

, Volume 31, Issue 6–8, pp 863–872 | Cite as

A path-based multi-agent navigation model

  • Cumhur Yigit OzcanEmail author
  • Murat Haciomeroglu
Original Article


The quality of a crowd simulation model is determined by its agents’ local and global trajectory efficiency. While an agent-based model can accurately handle the local trajectories, global decisions usually are handled by a global path planner. However, most of the global path planning techniques do not consider other agents and their possible paths and the future global flow in the environment. In this paper, we propose a composite system that takes future agent configurations into account via a modified A* algorithm to create a global path plan and combines the global path plan with a local navigation model. We show that the agents using the proposed model intelligently plan their paths based on the dynamic configuration of the environment. In order to balance the performance vs. trajectory quality trade-off, we propose a hierarchical grid structure and discuss its effects on both trajectory quality and computational performance.


Crowd simulation Path planning A* 

Supplementary material

Supplementary material 1 (wmv 5715 KB)


  1. 1.
    Reynolds boids. Accessed 21 August 2014
  2. 2.
    RVO2 news. Accessed 21 August 2014
  3. 3.
    van den Berg, J., Guy, S., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. In: Symposium on Robotics Research (2009)Google Scholar
  4. 4.
    Botea, A., Mller, M., Schaeffer, J.: Near optimal hierarchical path-finding. J. Game Dev. 1, 7–28 (2004)Google Scholar
  5. 5.
    Chen, D., Wang, L., Wu, X., Chen, J., Khan, S.U., Kolodziej, J., Tian, M., Huang, F., Liu, W.: Hybrid modelling and simulation of huge crowd over a hierarchical grid architecture. Future Gener. Comput. Syst. 29(5), 1309–1317 (2013)CrossRefGoogle Scholar
  6. 6.
    Golas, A., Narain, R., Lin, M.: Hybrid long-range collision avoidance for crowd simulation. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D ’13, pp. 29–36. ACM, New York (2013)Google Scholar
  7. 7.
    Guy, S., Chhugani, J., Curtis, S., Dubey, P., Lin, M., Manocha, D.: Pledestrians: a least-effort approach to crowd simulation. In: SCA’10, pp. 119–128. Switzerland (2010)Google Scholar
  8. 8.
    Guy, S., Chhugani, J., Kim, C., Satish, N., Lin, M., Manocha, D., Dubey, P.: Clearpath: highly parallel collision avoidance for multi-agent simulation. In: SCA’09, pp. 177–187. ACM, New York (2009)Google Scholar
  9. 9.
    Guy, S.J., Lin, M.C., Manocha, D.: Modeling collision avoidance behavior for virtual humans. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: volume 2—volume 2, AAMAS ’10, pp. 575–582. International Foundation for Autonomous Agents and Multiagent Systems, Richland (2010)Google Scholar
  10. 10.
    Haciomeroglu, M., Barut, O., Ozcan, C.Y., Sever, H.: A gpu-assisted hybrid model for real-time crowd simulations. Comput. Graphics 37(7), 862–872 (2013)CrossRefGoogle Scholar
  11. 11.
    Haciomeroglu, M., Laycock, R., Day, A.: Dynamically populating large urban environments with ambient virtual humans. Comput. Anim. Virtual Worlds 19(3–4), 307–317 (2008)CrossRefGoogle Scholar
  12. 12.
    Kapadia, M., Beacco, A., Garcia, F., Reddy, V., Pelechano, N., Badler, N.I.: Multi-domain real-time planning in dynamic environments. In: Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’13, pp. 115–124. ACM, New York (2013)Google Scholar
  13. 13.
    Kim, S., Guy, S.J., Manocha, D.: Velocity-based modeling of physical interactions in multi-agent simulations. In: Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’13, pp. 125–133. ACM, New York (2013)Google Scholar
  14. 14.
    Morini, F., Yersin, B., Maïm, J., Thalmann, D.: Real-time scalable motion planning for crowds. In: Cyberworlds, pp. 144–152 (2007)Google Scholar
  15. 15.
    Narain, R., Golas, A., Curtis, S., Lin, M.: Aggregate dynamics for dense crowd simulation. ACM Trans. Graph. 28, 122:1–122:8 (2009)CrossRefGoogle Scholar
  16. 16.
    Ondřej, J., Pettré, J., Olivier, A., Donikian, S.: A synthetic-vision based steering approach for crowd simulation. ACM Trans. Graph. 29, 123:1–123:9 (2010)Google Scholar
  17. 17.
    Patil, S., van den Berg, J., Curtis, S., Lin, M.C., Manocha, D.: Directing crowd simulations using navigation fields. IEEE Trans. Vis. Comput. Graphics 17(2), 244–254 (2011)CrossRefGoogle Scholar
  18. 18.
    Pelechano, N., Allbeck, J., Badler, N.: Virtual Crowds: Methods, Simulation, and Control. Morgan & Claypool Publishers, USA (2008)Google Scholar
  19. 19.
    Pelechano, N., Allbeck, J.M., Badler, N.I.: Controlling individual agents in high-density crowd simulation. In: SCA’07, pp. 99–108. Switzerland (2007)Google Scholar
  20. 20.
    Ren, C., Yang, C., Jin, S.: Agent-based modeling and simulation on emergency evacuation. In: Zhou, J. (ed.) Complex Sciences, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 5, pp. 1451–1461. Springer, Berlin, Heidelberg (2009)Google Scholar
  21. 21.
    Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In: SIGGRAPH, vol. 21, pp. 25–34 (1987)Google Scholar
  22. 22.
    Reynolds, C.W.: Steering behaviors for autonomous characters. In: Game Developers Conference ’09, pp. 763–782 (1999)Google Scholar
  23. 23.
    Ryder, G., Day, A.M.: Survey of real-time rendering techniques for crowds. Comput. Graphics Forum 24(2), 203–215 (2005)CrossRefGoogle Scholar
  24. 24.
    Snape, J., Manocha, D.: Goal velocity obstacles for spatial navigation of multiple virtual agents. In: Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems, AAMAS ’13, pp. 1191–1192. International Foundation for Autonomous Agents and Multiagent Systems, Richland (2013)Google Scholar
  25. 25.
    Thalmann, D., Grillon, H., Maim, J., Yersin, B.: Challenges in crowd simulation. In: International Conference on CyberWorlds, pp. 1–12. IEEE Computer Society, Bradford (2009)Google Scholar
  26. 26.
    Thalmann, D., O’Sullivan, C., Ciechomski, P., Dobbyn, S.: Populating virtual environments with crowds. In: Eurographics Tutorials. Vienna, Austria (2006)Google Scholar
  27. 27.
    Thalmann, N., Thalmann, D.: Virtual humans: thirty years of research, what next? Vis. Comput. 21(12), 997–1015 (2005)CrossRefGoogle Scholar
  28. 28.
    van Toll, W., Cook IV, A., Roland, G.: Real-time density-based crowd simulation. Comput. Anim. Virtual Worlds 23, 59–69 (2012)CrossRefGoogle Scholar
  29. 29.
    Treuille, A., Cooper, S., Popovic, Z.: Continuum crowds. In: SIGGRAPH, pp. 1160–1168. Boston, Massachusetts (2006)Google Scholar
  30. 30.
    Turkay, C., Koc, E., Balcisoy, S.: Integrating information theory in agent-based crowd simulation behavior models. Comput. J. 54(11), 1810–1820 (2011)CrossRefGoogle Scholar
  31. 31.
    Xiong, M., Chen, Y., Wang, H., Hu, M.: A motion planning framework for simulating virtual crowds. In: Computational Intelligence and Intelligent Systems. Springer, Berlin. Heidelberg (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Computer EngineeringHacettepe UniversityAnkaraTurkey
  2. 2.Department of Computer EngineeringGazi UniversityAnkaraTurkey

Personalised recommendations