The Visual Computer

, Volume 31, Issue 5, pp 541–555 | Cite as

Velocity-based modeling of physical interactions in dense crowds

  • Sujeong KimEmail author
  • Stephen J. Guy
  • Karl Hillesland
  • Basim Zafar
  • Adnan Abdul-Aziz Gutub
  • Dinesh Manocha
Original Article


We present an interactive algorithm to model physics-based interactions in dense crowds. Our approach is capable of modeling both physical forces and interactions between agents and obstacles, while also allowing the agents to anticipate and avoid upcoming collisions during local navigation. We combine velocity-based collision-avoidance algorithms with external physical forces. The overall formulation produces various effects of forces acting on agents and crowds, including balance recovery motion and force propagation through the crowd. We further extend our method to model more complex behaviors involving social and cultural rules. We use finite-state machines to specify a series of behaviors and demonstrate our approach on many complex scenarios. Our algorithm can simulate a few thousand agents at interactive rates and can generate many emergent behaviors.


Multi-agent simulation Physical interactions 



This work was supported by NSF awards 1000579, 1117127, 1305286, Intel, AMD, and a grant from the Boeing Company. We also thank the Center of Research Excellence in Hajj and Omrah (HajjCoRE) for its support through the collaboration project titled “Simulate the movement of individual in large-scale crowds during Tawaf”.

Supplementary material

Supplementary material 1 (mp4 23814 KB)


  1. 1.
    AMD: Bullet Physics 2.80. (2012)
  2. 2.
    Baraff, D.: An introduction to physically based modeling: rigid body simulation i - unconstrained rigid body dynamics. In: An Introduction to Physically Based Modelling, SIGGRAPH ’97 Course, Notes, p. 97 (1997)Google Scholar
  3. 3.
    Buckland, M.: Programming game AI by example. Jones & Bartlett Learning (2005)Google Scholar
  4. 4.
    Curtis, S., Guy, S.J., Zafar, B., Manocha, D.: Virtual tawaf: a case study in simulating the behavior of dense, heterogeneous crowds. In: 1st IEEE Workshop on Modeling, Simulation and Visual Analysis of Large Crowds, pp. 128–135 (2011)Google Scholar
  5. 5.
    Curtis, S., Manocha, D.: Pedestrian simulation using geometric reasoning in velocity space. In: Proceedings of Pedestrian and Evacuation Dynamics (2012)Google Scholar
  6. 6.
    Curtis, S., Snape, J., Manocha, D.: Way portals: efficient multi-agent navigation with line-segment goals. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. I3D ’12, pp. 15–22. ACM, New York (2012)Google Scholar
  7. 7.
    Durupinar, F., Pelechano, N., Allbeck, J., Güdükbay, U., Badler, N.: How the ocean personality model affects the perception of crowds. Comput. Graphics Appl. IEEE 31(3), 22–31 (2011)Google Scholar
  8. 8.
    Guy, S.J., Curtis, S., Lin, M.C., Manocha, D.: Least-effort trajectories lead to emergent crowd behaviors. Phys. Rev. E 85, 016110 (2012)Google Scholar
  9. 9.
    Guy, S.J., Kim, S., Lin, M.C., Manocha, D.: Simulating heterogeneous crowd behaviors using personality trait theory. In: Symposium on Computer Animation, pp. 43–52. ACM (2011)Google Scholar
  10. 10.
    Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407(6803), 487–490 (2000)CrossRefGoogle Scholar
  11. 11.
    Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995)CrossRefGoogle Scholar
  12. 12.
    Hughes, R.L.: The flow of human crowds. Annu. Rev. Fluid Mech. 35(1), 169–182 (2003)CrossRefGoogle Scholar
  13. 13.
    Karamouzas, I., Overmars, M.: Simulating and evaluating the local behavior of small pedestrian groups. IEEE Trans. Vis. Comput. Graphics 18(3), 394–406 (2012)Google Scholar
  14. 14.
    Kim, M., Hyun, K., Kim, J., Lee, J.: Synchronized multi-character motion editing. ACM Trans. Graph. 28(3), 79:1–79:9 (2009)Google Scholar
  15. 15.
    Kim, S., Guy, S.J., Manocha, D.: Velocity-based modeling of physical interactions in multi-agent simulations. In: Eurographics/ACM SIGGRAPH Symposium on Computer Animation. Eurographics Association (2013)Google Scholar
  16. 16.
    Kim, S., Guy, S.J., Manocha, D., Lin, M.C.: Interactive simulation of dynamic crowd behaviors using general adaptation syndrome theory. Symposium on Interactive 3D Graphics. I3D ’12, pp. 55–62. ACM, New York (2012)Google Scholar
  17. 17.
    Koshak, N., Fouda, A.: Analyzing pedestrian movement in mataf using gps and gis to support space redesign. In: The 9th International Conference on Design and Decision Support Systems in Architecture and Urban, Planning (2008)Google Scholar
  18. 18.
    Köster, G., Treml, F., Gödel, M.: Avoiding numerical pitfalls in social force models. Phys. Rev. E 87, 063305 (2013). doi: 10.1103/PhysRevE.87.063305
  19. 19.
    Lee, K.H., Choi, M.G., Hong, Q., Lee, J.: Group behavior from video: a data-driven approach to crowd simulation. In: Symposium on Computer, Animation, pp. 109–118 (2007)Google Scholar
  20. 20.
    Lemercier, S., Jelic, A., Kulpa, R., Hua, J., Fehrenbach, J., Degond, P., Appert-Rolland, C., Donikian, S., Pettré, J.: Realistic following behaviors for crowd simulation. Comput. Graph. Forum 31(2pt2), 489–498 (2012)Google Scholar
  21. 21.
    Lerner, A., Chrysanthou, Y., Shamir, A., Cohen-Or, D.: Data driven evaluation of crowds. In: MIG, pp. 75–83 (2009)Google Scholar
  22. 22.
    Maki, B., McIlroy, W., Fernie, G.: Change-in-support reactions for balance recovery. IEEE Eng. Med. Biol. Mag. 22(2), 20–26 (2003)CrossRefGoogle Scholar
  23. 23.
    Muico, U., Popović, J., Popović, Z.: Composite control of physically simulated characters. ACM Trans. Graph. 30(3) (2011)Google Scholar
  24. 24.
    Musse, S.R., Thalmann, D.: A model of human crowd behavior: group inter-relationship and collision detection analysis. In: Proc. Workshop of Computer Animation and Simulation of Eurographics’97, pp. 39–51 (1997)Google Scholar
  25. 25.
    Narain, R., Golas, A., Curtis, S., Lin, M.C.: Aggregate dynamics for dense crowd simulation. ACM Trans. Graph. 28(5), 122:1–122:8 (2009)Google Scholar
  26. 26.
    Ondřej, J., Pettré, J., Olivier, A.H., Donikian, S.: A synthetic-vision based steering approach for crowd simulation. ACM Trans. Graph. 29(4), 123:1–123:9 (2010)Google Scholar
  27. 27.
    Pelechano, N., Allbeck, J.M., Badler, N.I.: Controlling individual agents in high-density crowd simulation. In: Symposium on Computer, Animation, pp. 99–108 (2007)Google Scholar
  28. 28.
    Pettré, J., Ondřej, J., Olivier, A.H., Cretual, A., Donikian, S.: Experiment-based modeling, simulation and validation of interactions between virtual walkers. In: Symposium on Computer Animation, SCA ’09, pp. 189–198. ACM (2009)Google Scholar
  29. 29.
    Reynolds, C.: Steering behaviors for autonomous characters. In: Game Developers Conference 1999 (1999)Google Scholar
  30. 30.
    Sakuma, T., Mukai, T., Kuriyama, S.: Psychological model for animating crowded pedestrians: virtual humans and social agents. Comput. Anim. Virtual Worlds 16, 343–351 (2005)CrossRefGoogle Scholar
  31. 31.
    Seyfried, A., Steffen, B., Klingsch, W., Boltes, M.: The fundamental diagram of pedestrian movement revisited. J. Stat. Mech. 2005, P10,002 (2005)Google Scholar
  32. 32.
    Shao, W., Terzopoulos, D.: Autonomous pedestrians. In: Symposium on Computer, Animation, pp. 19–28 (2005)Google Scholar
  33. 33.
    Shapiro, A., Pighin, F., Faloutsos, P.: Hybrid control for interactive character animation. In: Pacific Conference on Computer Graphics and Applications, PG ’03, p. 455. IEEE Computer Society, Washington, DC (2003)Google Scholar
  34. 34.
    Shiratori, T., Coley, B., Cham, R., Hodgins, J.K.: Simulating balance recovery responses to trips based on biomechanical principles. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2009)Google Scholar
  35. 35.
    Shum, H.P.H., Komura, T., Yamazaki, S.: Simulating multiple character interactions with collaborative and adversarial goals. IEEE Trans. Vis. Comput. Graph. 18(5), 741–752 (2012)CrossRefGoogle Scholar
  36. 36.
    Sok, K.W., Yamane, K., Lee, J., Hodgins, J.: Editing dynamic human motions via momentum and force. Symposium on Computer Animation. SCA ’10, pp. 11–20. Eurographics Association, Aire-la-Ville (2010)Google Scholar
  37. 37.
    Still, G.K.: Proximate and distal causality. (2013)
  38. 38.
    Thalmann, D., Musse, S.: Behavioral animation of crowds. In: Crowd Simulation, pp. 111–168. Springer, London (2013).doi: 10.1007/978-1-4471-4450-2_5
  39. 39.
    Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. In: ACM SIGGRAPH 2006, pp. 1160–1168. ACM (2006) Google Scholar
  40. 40.
    Ulicny, B., Thalmann, D.: Towards interactive real-time crowd behavior simulation. In: Computer Graphics Forum, vol. 21, pp. 767–775. Wiley Online, Library (2002)Google Scholar
  41. 41.
    van den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. In: Robotics Research: 14th ISRR (STAR), vol. 70, pp. 3–19 (2011)Google Scholar
  42. 42.
    Wei, Y., Gang, B., Zuwen, W.: Balance recovery for humanoid robot in the presence of unknown external push. In: International Conference on Mechatronics and Automation, 2009. ICMA 2009, pp. 1928–1933 (2009). doi: 10.1109/ICMA.2009.5246563
  43. 43.
    Yeh, H., Curtis, S., Patil, S., van den Berg, J., Manocha, D., Lin, M.: Composite agents. In: Symposium on Computer, Animation, pp. 39–47 (2008)Google Scholar
  44. 44.
    Yu, Q., Terzopoulos, D.: A decision network framework for the behavioral animation of virtual humans. In: Symposium on Computer, Animation, pp. 119–128 (2007)Google Scholar
  45. 45.
    Yu, W., Johansson, A.: Modeling crowd turbulence by many-particle simulations. Phys. Rev. E 76, 046105 (2007)Google Scholar
  46. 46.
    Zordan, V.B., Majkowska, A., Chiu, B., Fast, M.: Dynamic response for motion capture animation. ACM Trans. Graph. 24(3), 697–701 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sujeong Kim
    • 1
    Email author
  • Stephen J. Guy
    • 2
  • Karl Hillesland
    • 3
  • Basim Zafar
    • 4
  • Adnan Abdul-Aziz Gutub
    • 5
  • Dinesh Manocha
    • 1
  1. 1.University of North Carolina at Chapel HillChapel HillUSA
  2. 2.University of MinnesotaMinneapolisUSA
  3. 3.Advanced Micro DevicesSunnyvaleUSA
  4. 4.Hajj Research InstituteUmm Al-Qura UniversityMeccaSaudi Arabia
  5. 5.The Custodian of the Two Holy Mosques Institute of the Hajj & Omrah ResearchUmm Al-Qura UniversityMeccaSaudi Arabia

Personalised recommendations