Advertisement

Deformable mesh simulation for virtual laparoscopic cholecystectomy training

  • 515 Accesses

  • 5 Citations

Abstract

Virtual simulation of laparoscopic surgery is getting attention for training novice surgeons and medical residents for practice. Virtual surgical simulation has many advantages because it can provide users with a safe environment without animal or patient subjects. Although several solutions are available in the market, there are no reported studies with detailed technical descriptions of the virtual simulation of laparoscopic cholecystectomy (gallbladder removal surgery), one of the major surgeries performed using laparoscopic surgical procedures. Here, we present a realistic laparoscopic cholecystectomy training simulator. The system was developed by applying state-of-the-art computer graphical technologies using an open source library and proposing a new method of deformable mesh carving. The deformable mesh carving is a volume-based method using potential fields and hexahedral finite element method. In this paper, we describe the detailed techniques used to realize the laparoscopic cholecystectomy simulation. The experimental and user study results prove that the presented system simulates the cholecystectomy procedures in real time with high degree of realism and fidelity.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Soper, N.J., Stockmann, P.T., Dunnegan, D.L., Ashley, S.W.: Laparoscopic cholecystectomy. The new gold standard? Arch. Surg. 127(8), 917–921 (1992)

  2. 2.

    WebSurg. Available at http://www.websurg.com/ (2013)

  3. 3.

    Schijven, M.P., Jakimowicz, J.J., Broeders, I.A.M.J., Tseng, L.N.L.: The Eindhoven laparoscopic cholecystectomy training course improving operating room performance using virtual reality training: results from the first E.A.E.S. accredited virtual reality trainings curriculum. Surg. Endo. 19(9), 1220–1226 (2005)

  4. 4.

    Gauger, P.G., et al.: Laparoscopic simulation training with proficiency targets improves practice and performance of novice surgeons. Am. J. Surg. 199, 72–80 (2010)

  5. 5.

    Zhang, A., Hunerbein, M., Dai, Y., Schlag, P.M., Beller, S.: Construct validity testing of a laparoscopic surgery simulator (Lap Mentor). Surg. Endosc. 22, 1440–1444 (2008)

  6. 6.

    Peterlik, I., Nouicer, M., Duriez, C., Cotin, S., Kheddar, A.: Constraint-based haptic rendering of multirate compliant mechanisms. IEEE Trans. Haptics 4(3), 175–187 (2011)

  7. 7.

    Yiasemidou, M., Glassman, D., Vasas, P., Badiani, S., Patel, B.: Faster simulated laparoscopic cholecystectomy with haptic feedback technology. Open Access Surg. 4, 39–44 (2011)

  8. 8.

    SOFA. Available at http://www.sofa-framework.org/ (2013)

  9. 9.

    Faure, F., Duriez, C., Delingette, H., Allard, J., Gilles, B., Marchesseau, S., Talbot, H., Courtecuisse, H., Bousquet, G., Peterlik, I., Cotin, S.: Sofa: a multi-model framework for interactive physical simulation. Soft Tissue Biomech. Model. Comput. Assist. Surg. 283–321 (2012)

  10. 10.

    Courtecuisse, H., Jung, H., Allard, J., Duriez, C., Lee, D.Y., Cotin, S.: GPU-based real-time soft tissue deformation with cutting and haptic feedback. Prog. Biophys. Mol. Biol. 103(2), 159–168 (2010)

  11. 11.

    Pemmod, E., Semesant, M., Relan, J., Delingette, H.: Interactive real time simulation of cardiac radio-frequency ablation. VCBM 91–98, 2010 (2010)

  12. 12.

    Nesme, M., Kry, P.G., Jeřábková, L., Faure, F.: Preserving topology and elasticity for embedded deformable models. ACM Trans. Graph. 28(3), 52 (2009)

  13. 13.

    SEP, SimSurgery Co., Available at http://www.simsurgery.com/ (2013)

  14. 14.

    LAP Mentor, Simbionix Co., Available at http://www.simbionix.com/ (2013)

  15. 15.

    LapVR, Immersion Co., Available at http://www.immersion.com/ (2013)

  16. 16.

    Gallagher, A.G., et al.: Virtual reality simulation for the operating room proficiency-based training as a paradigm shift in surgical skills training. Ann. Surg. 241(2), 364–372 (2005)

  17. 17.

    Rajesh, A., Jonnie, W., Indran, B., Parvinderpal, S., Thanos, A., Ara, D.: Proving the effectiveness of virtual reality simulation for training in laparoscopic surgery. Ann. Surg. 246(5), 771–779 (2007)

  18. 18.

    Basdogan, C., Ho, C.H., Srinivasan, M.A.: Virtual environments for medical training: graphical and haptic simulation of laparoscopic common bile duct exploration. IEEE/ASME Trans. Mech. 6(3), 269–285 (2001)

  19. 19.

    Park, J.S., Chung, M.S., Hwang, S.B., Shin, B.S., Park, H.S.: Visible Korean human: its techniques and applications. Clin. Anat. 19, 216–224 (2006)

  20. 20.

    Georgii, J., Westermann, R.: Corotated finite elements made fast and stable. VRIPHYS 11–19 (2008)

  21. 21.

    Labelle, F., Shewchuk, J.R.: Isosurface stuffing: fast tetrahedral meshes with good dihedral angles. ACM Trans. Graph. 26(3), 1–10 (2007)

  22. 22.

    Nesme, M., Marchal, M., Promayon, E., Chabanas, M., Payan, Y., Faure, F.: Physically realistic interactive simulation for biological soft tissues. Recent Res. Dev. Biomech. 2 (2005)

  23. 23.

    Hubert, N.: GPU Gems 3. Lab Companion Series 3. Addison-Wesley, ISBN 0321515269 (2008)

  24. 24.

    Bruyns, C.D., Montgomery, K.: Generalized interactions using virtual tools within the Spring framework: probing, piercing, cauterizing and ablating. Stud. Health Tech. Inform. 85, 74–78 (2002)

  25. 25.

    Kim, Y., Lee, S., Roy, F., Lee, D., Kim, L., Park, S.: Carving mesh with deformation for soft tissue removal simulation. In: Mesh Processing in Medical Image Analysis, pp. 70–79 (2012)

  26. 26.

    Kim, L.H., Park, S.H.: Haptic interaction and volume modeling techniques for realistic dental simulation. Visual Comput. 22, 90–98 (2006)

  27. 27.

    Mauch, S.: A fast algorithm for computing the closest point and distance transform. Technical Report. Available at http://www.its.caltech.edu/sean/ (2013)

  28. 28.

    Velho, L., Figureiredo, L.H.D., Gomes, J.: A unified approach for hierarchical adaptive tessellation of surfaces. ACM Trans. Graph. 18(4), 329–360 (1999)

  29. 29.

    Jeřábková, L., Bousquet, G., Barbier, S., Faure, F., Allard, J.: Volumetric modeling and interactive cutting of deformable bodies. Prog. Biophys. Mol Biol. 103(2), 217–224 (2010)

  30. 30.

    Kim, Y., Chang, D., Kim, J., Park, S.: Gallbladder removal simulation for laparoscopic surgery training: a hybrid modeling method. J. Comput. Sci. Technol. 28(3), 499–507 (2013)

  31. 31.

    Duriez, C., Cotin, S., Lenoir, J., Neumann, P.: New approaches to catheter navigation for interventional radiology simulation. Comput. Aided Surg. 11(6), 300–308 (2006)

  32. 32.

    Rapidform XOR3, INUS Tech. Co., Available at http://www.rapidform.com/ (2013)

  33. 33.

    NT Research Co., Available at http://www.ntresearch.net/ (2013)

Download references

Acknowledgments

This research was supported by the KIST Institutional Program (2E24520, 2E24551).

Author information

Correspondence to Sehyung Park.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (wmv 9704 KB)

Supplementary material 2 (wmv 2963 KB)

Supplementary material 1 (wmv 9704 KB)

Supplementary material 2 (wmv 2963 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Kim, L., Lee, D. et al. Deformable mesh simulation for virtual laparoscopic cholecystectomy training. Vis Comput 31, 485–495 (2015). https://doi.org/10.1007/s00371-014-0944-3

Download citation

Keywords

  • Medical simulation
  • Mesh deformation
  • Mesh carving
  • Mesh sculpting
  • Cholecystectomy