Advertisement

Jacobians and Hessians of mean value coordinates for closed triangular meshes

  • 291 Accesses

  • 6 Citations

Abstract

Mean value coordinates provide an efficient mechanism for the interpolation of scalar functions defined on orientable domains with a nonconvex boundary. They present several interesting features, including the simplicity and speed that yield from their closed-form expression. In several applications though, it is desirable to enforce additional constraints involving the partial derivatives of the interpolated function, as done in the case of the Green coordinates approximation scheme (Ben-Chen, Weber, Gotsman, ACM Trans. Graph.:1–11, 2009) for interactive 3D model deformation.

In this paper, we introduce the analytic expressions of the Jacobian and the Hessian of functions interpolated through mean value coordinates. We provide these expressions both for the 2D and 3D case. We also provide a thorough analysis of their degenerate configurations along with accurate approximations of the partial derivatives in these configurations. Extensive numerical experiments show the accuracy of our derivation. In particular, we illustrate the improvements of our formulae over a variety of finite differences schemes in terms of precision and usability. We demonstrate the utility of this derivation in several applications, including cage-based implicit 3D model deformations (i.e., variational MVC deformations). This technique allows for easy and interactive model deformations with sparse positional, rotational, and smoothness constraints. Moreover, the cages produced by the algorithm can be directly reused for further manipulations, which makes our framework directly compatible with existing software supporting mean value coordinates based deformations.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Babuska, I., Oden, J.: Verification and validation in computational engineering and science: basic concepts. In: Computer Methods in Applied Mechanics and Engineering, pp. 4057–4066 (2004)

  2. 2.

    Ben-Chen, M., Weber, O., Gotsman, C.: Variational harmonic maps for space deformation. ACM Trans. Graph. (2009). doi:10.1145/153126.1531340, 1–11

  3. 3.

    Borosán, P., Howard, R., Zhang, S., Nealen, A.: Hybrid mesh editing. In: Proc. of Eurographics (2010)

  4. 4.

    Loop, C.T., DeRose, T.D.: A mulisided generalization of Bézier surfaces. ACM Trans. Graph. 8, 204–234 (1989)

  5. 5.

    Wachspress, E.L.: A Rational Finite Element Basis. Academic Press, New York (1975)

  6. 6.

    Etiene, T., Scheiddeger, C., Nonato, L., Kirby, R., Silva, C.: Verifiable visualization for isosurface extraction. IEEE Trans. Vis. Comput. Graph. 15, 1227–1234 (2009)

  7. 7.

    Etiene, T., Nonato, L., Scheiddeger, C., Tierny, J., Peters, T.J., Pascucci, V., Kirby, R., Silva, C.: Topology verification for isosurface extraction. IEEE Trans. Vis. Comput. Graph. (2011). doi:10.1109/TVCG.2011.109

  8. 8.

    Flannery, B.P., Press, W.H., Teukolsky, S.A., Vetterling, W.: Numerical Recipes in C. Press Syndicate of the University of Cambridge, New York (1992)

  9. 9.

    Floater, M.: Parameterization and smooth approximation of surface triangulations. Comput. Aided Geom. Des. 14, 231–250 (1997)

  10. 10.

    Floater, M.: Parametric tilings and scattered data approximation. Int. J. Shape Model. 4, 165–182 (1998)

  11. 11.

    Floater, M.: Mean value coordinates. Comput. Aided Geom. Des. 20, 19–27 (2003)

  12. 12.

    Floater, M.S., Kos, G., Reimers, M.: Mean value coordinates in 3D. Comput. Aided Geom. Des. 22, 623–631 (2005)

  13. 13.

    Fornberg, B.: Numerical differentiation of analytic functions. ACM Trans. Math. Softw. 7(4), 512–526 (1981)

  14. 14.

    Hormann, K., Floater, M.: Mean value coordinates for arbitrary planar polygons. ACM Trans. Graph. 25, 1424–1441 (2006)

  15. 15.

    Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.Y., Teng, S.H., Bao, H., Guo, B., Shum, H.Y.: Subspace gradient domain mesh deformation. ACM Trans. Graph. 25, 1126–1134 (2006)

  16. 16.

    Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic coordinates for character articulation. ACM Trans. Graph. 26 (2007)

  17. 17.

    Ju, T., Schaefer, S., Warren, J.: Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24(3), 561–566 (2005)

  18. 18.

    Langer, T., Belyaev, A., Seidel, H.P.: Spherical barycentric coordinates. In: Proc. of Symposium on Geometry Processing, pp. 81–88 (2006)

  19. 19.

    Lipman, Y., Kopf, J., Cohen-Or, D., Levin, D.: Gpu-assisted positive mean value coordinates for mesh deformation. In: Symposium on Geometry Processing, pp. 117–123 (2007)

  20. 20.

    Lipman, Y., Levin, D., Cohen-Or, D.: Green coordinates. ACM Trans. Graph. 27(3), 1–10 (2008)

  21. 21.

    Malsch, E., Dasgupta, G.: Algebraic construction of smooth interpolants on polygonal domains. In: Proc. of International Mathematica Symposium (2003)

  22. 22.

    Meyer, M., Lee, H., Barr, A., Desbrun, M.: Generalized barycentric coordinates for irregular polygons. J. Graph. Tools 7, 13–22 (2002)

  23. 23.

    Nieser, M., Reitebuch, U., Polthier, K.: CubeCover—parameterization of 3D volumes. Comput. Graph. Forum 30, 1397–1406 (2011)

  24. 24.

    Squire, W., Trapp, G.: Using complex variables to estimate derivatives of real functions. SIAM Rev. 40(1), 110–112 (1998)

  25. 25.

    Thiery, J.M.: MVC derivatives C++ implementation. (2013). http://sourceforge.net/projects/meanvaluecoordinatesderivs/files/latest/download?source=files

  26. 26.

    Urago, M.: Analytical integrals of fundamental solution of three-dimensional Laplace equation and their gradients. Trans. Jpn. Soc. Mech. Eng. C 66, 254–261 (2000)

  27. 27.

    Warren, J.: Barycentric coordinates for convex polytopes. Adv. Comput. Math. 6, 97–108 (1996)

  28. 28.

    Warren, J., Schaefer, S., Hirani, A., Desbrun, M.: Barycentric coordinates for convex sets. Adv. Comput. Math. 27, 319–338 (2007)

Download references

Author information

Correspondence to Jean-Marc Thiery.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

(AVI 6.5 MB)

(AVI 6.5 MB)

(PDF 597 kB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thiery, J., Tierny, J. & Boubekeur, T. Jacobians and Hessians of mean value coordinates for closed triangular meshes. Vis Comput 30, 981–995 (2014). https://doi.org/10.1007/s00371-013-0889-y

Download citation

Keywords

  • Cage coordinates
  • Mean value coordinates
  • Constrained interpolation
  • Implicit cage deformation