Optimizing neighborhood projection with relaxation factor for inextensible cloth simulation

  • 759 Accesses

  • 4 Citations


In this paper, we propose a novel method for inextensible cloth simulation. Our method introduces a neighborhood projection optimized with a relaxation factor. The neighborhood projection enforces inextensibility by modifying particle positions with a Jacobi-style iteration, leading to conservation of linear and angular quasi momenta. The relaxation factor is estimated according to the corrections and constraints, and is used to scale the corrections while keeping convergence to a smaller number of iterations. Experimental results demonstrate that our method increases the simulation efficiency, and stably handles inextensible cloth even in overconstrained situations. In addition to the simulation of hanging cloth and draping cloth, the simulated umbrella demonstrates the characters of our method for this type of objects.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Ascher, U.M., Boxerman, E.: On the modified conjugate gradient method in cloth simulation. Vis. Comput. 19(7), 526–531 (2003)

  2. 2.

    Baraff, D.: Linear-time dynamics using Lagrange multipliers. In: Proc. of ACM SIGGRAPH, pp. 137–146 (1996)

  3. 3.

    Baraff, D., Witkin, A.: Large steps in cloth simulation. In: Proc. of ACM SIGGRAPH, pp. 43–54 (1998)

  4. 4.

    Bender, J., Bayer, D.: Parallel simulation of inextensible cloth. In: Proc. of Virtual Reality Interactions and Physical Simulations (VRIPhys), pp. 47–55 (2008)

  5. 5.

    Bender, J., Bayer, D.: Impulse-based simulation of inextensible cloth. In: Computer Graphics and Visualization—IADIS Multi Conference on Computer Science and Information Systems, pp. 202–205 (2008)

  6. 6.

    Bergou, M., Wardetzky, M., Harmon, D., Zorin, D., Grinspun, E.: A quadratic bending model for inextensible surfaces. In: Proc. of Fourth Eurographics Symposium on Geometry Processing, pp. 227–230 (2006)

  7. 7.

    Breen, D.E., House, D.H., Wozny, M.J.: Predicting the drape of woven cloth using interacting particles. In: Proc. of ACM SIGGRAPH, pp. 365–372 (1994)

  8. 8.

    Bridson, R., Fedkiw, R., Anderson, J.: Robust treatment of collisions, contact and friction for cloth animation. In: Proc. of ACM SIGGRAPH (2002)

  9. 9.

    Bridson, R., Marino, S., Fedkiw, R.: Simulation of clothing with folds and wrinkles. In: Proc. of Symposium on Computer Animation, pp. 28–36 (2003)

  10. 10.

    Byrne, C.L.: Applied Iterative Methods. A.K. Peters, Wellesley (2007)

  11. 11.

    Chen, Y., Magnenat Thalmann, N., Allen, B.F.: Physical simulation of wet clothing for virtual humans. Vis. Comput. 28, 765–774 (2012)

  12. 12.

    Chen, X., Guo, Y., Zhou, B., Zhao, Q.: Deformable model for estimating clothed and naked human shapes from a single image. Vis. Comput. (2013)

  13. 13.

    Choi, K.-J., Ko, H.-S.: Stable but responsive cloth. In: Proc. of ACM SIGGRAPH, pp. 604–611 (2002)

  14. 14.

    Eberhardt, B., Etzmuß, O., Hauth, M.: Implicit-explicit schemes for fast animation with particle systems. In: Proc. of Eurographics Computer Animation and Simulation Workshop, pp. 137–151 (2000)

  15. 15.

    English, E., Bridson, R.: Animating developable surfaces using nonconforming elements. In: Proc. of ACM SIGGRAPH, pp. 66:1–66:5 (2008)

  16. 16.

    Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., Grinspun, E.: Efficient simulation of inextensible cloth. ACM Trans. Graph. 26(3), 49:1–49:7 (2008)

  17. 17.

    Guan, P., Reiss, L., Hirshberg, D., Weiss, A., Black, M.J.: DRAPE: DRessnig Any PErson. ACM Trans. Graph. 31(4), 35:1–35:10 (2012)

  18. 18.

    Hageman, L.A., Young, D.M.: Applied Iterative Methods. Academic Press, San Diego (1981)

  19. 19.

    Hong, M., Choi, M.H., Jung, S., Welch, S.: Effective constrained dynamic simulation using implicit constraint enforcement. In: Proc. of International Conference on Robotics and Automation, pp. 4520–4525 (2005)

  20. 20.

    Jakobsen, T.: Advanced character physics. In: Proc. of Game Developer’s Conference, pp. 383–401 (2001)

  21. 21.

    Kaldor, J.M., James, D.L., Marschner, S.: Simulating knitted cloth at the yarn level. ACM Trans. Graph. 27(3), 65:1–65:9 (2008).

  22. 22.

    Kaldor, J.M., James, D.L., Marschner, S.: Efficient yarn-based cloth with adaptive contact linearization. ACM Trans. Graph. 29(4), 105:1–105:10 (2010)

  23. 23.

    Kim, T.Y., Chentanez, N., Müller, M.: Long range attachments—a method to simulate inextensible clothing in computer games. In: Proc. of Symposium on Computer Animation (2012)

  24. 24.

    Macklin, M., Müller, M.: Position based fluids. ACM Trans. Graph. 32(4), 104:1–104:12 (2013)

  25. 25.

    Marsden, J.: Introduction to Mechanics and Symmetry. Springer, Berlin (1999)

  26. 26.

    Meyer, M., Debunne, G., Desbrun, M., Barr, A.H.: Interactive animation of cloth-like objects in virtual reality. J. Vis. Comput. Animat. 12(1), 1–12 (2001)

  27. 27.

    Miklós, B., Max, W., Stephen, R., Basile, A., Eitan, G.: Discrete elastic rods. ACM Trans. Graph. 27(3), 63:1–63:12 (2007)

  28. 28.

    Müller, M.: Hierarchical position based dynamics. In: Proc. of Virtual Reality Interactions and Physical Simulations (2008)

  29. 29.

    Müller, M., Heidelberger, B., Hennix, M., Ratcliff, J.: Position based dynamics. In: Proc. of Virtual Reality Interactions and Physical Simulation, pp. 71–80 (2006)

  30. 30.

    Provot, X.: Deformation constraints in a mass-spring model to describe rigid cloth behavior. Proc. - Graph. Interface (1995). doi:

  31. 31.

    Rohmer, D., Popa, T., Cani, M.-P., Hahmann, S., Sheffer, A.: Animation wrinkling: augmenting coarse cloth simulations with realistic-looking wrinkles. ACM Trans. Graph. 29(6), 157:1–157:8 (2010)

  32. 32.

    Schenk, O., Gärtner, K.: On fast factorization pivoting methods for sparse symmetric indefinite systems. Electron. Trans. Numer. Anal. 23, 158–179 (2006)

  33. 33.

    Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. In: Proc. of ACM SIGGRAPH, pp. 205–214 (1987)

  34. 34.

    Thomaszewski, B., Pabst, S., Straßer, W.: Continuum-based strain limiting. Comput. Graph. Forum 28(2), 569–576 (2009)

  35. 35.

    Tsiknis, D.: Better cloth through unbiased strain limiting and physics-aware subdivision. University of British (2006)

  36. 36.

    Umetani, N., Kaufman, D.M., Igarashi, T., Grinspun, E.: Sensitive couture for interactive garment editing and modeling. ACM Trans. Graph. 30(4), 90:1–90:12 (2011)

  37. 37.

    Verlet, L.: Computer experiments on classical fluids. I. Thermodynamical properties of Lennard–Jones molecules. Phys. Rev. 159(1), 98–103 (1967)

  38. 38.

    Volino, P., Courchesne, M., Magnenat Thalmann, N.: Versatile and efficient techniques for simulating cloth and other deformable objects. In: Proc. of ACM SIGGRAPH, pp. 137–144 (1995)

  39. 39.

    Volino, P., Magnenat-Thalmann, N., Faure, F.: A simple approach to nonlinear tensile stiffness for accurate cloth simulation. ACM Trans. Graph. 28(4), 105:1–105:16 (2009).

  40. 40.

    Wang, H., O’Brien, J.F., Ramamoorthi, R.: Multi-resolution isotropic strain limiting. ACM Trans. Graph. 29(6), 156:1–156:10 (2010)

  41. 41.

    Wang, H., O’Brien, J.F., Ramamoorthi, R.: Data-driven elastic models for cloth: modeling and measurement. ACM Trans. Graph. 30(4), 71:1–71:12 (2011)

  42. 42.

    Ye, J.: Simulating inextensible cloth using impulses. Comput. Graph. Forum 27(7), 1901–1907 (2008)

  43. 43.

    Young, D.M.: Iterative Solution of Large Linear Systems. Academic Press, San Diego (1971)

Download references


We would like to thank the anonymous reviewers for their help in improving the paper. We also thank Marie-Paule Cani for support. This work was partially supported by 863 Program (2012AA011504), NSFC (60933006), R&D Program (2013BAH35F01), and ITER (2012GB102008).

Author information

Correspondence to Faming Li.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(AVI 50.0 MB)

(AVI 50.0 MB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, X., Li, F., Zhao, Q. et al. Optimizing neighborhood projection with relaxation factor for inextensible cloth simulation. Vis Comput 30, 431–442 (2014) doi:10.1007/s00371-013-0866-5

Download citation


  • Cloth simulation
  • Inextensibility
  • Neighborhood projection
  • Relaxation factor