Advertisement

Solid texture synthesis for heterogeneous translucent materials

  • 488 Accesses

Abstract

We present a method to synthesize solid textures from heterogeneous translucent materials that have a complex pattern and subsurface scattering effect. A solid texture provides consistent texture throughout the volume, so that it can be used to model the texture on an arbitrary geometry. However, solid texture synthesis requires a huge amount of time to generate the volume. Moreover, a synthesized solid texture acquires only the color information from an input exemplar. Therefore, it has been difficult to render the appearance of a translucent object realistically without additional appearance data. In this paper, we introduce a new search method to accelerate synthesizing of solid textures. This method decomposes the candidates in an exemplar into several subgroups and searches for the best similar neighborhood in each decomposed subgroup. We also apply subsurface scattering effects to the shell layer of a synthesized object for realistic rendering of a translucent solid texture. Experimental results show that our rendering method can produce realistic rendering results for various heterogeneous translucent objects. It can also represent cross-sections of an object realistically without reconstructing the texture and surface geometry.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Arbree, A., Walter, B., Bala, K.: Heterogeneous subsurface scattering using the finite element method. IEEE Trans. Vis. Comput. Graph. 17(7), 956–969 (2011)

  2. 2.

    Chen, G., Peers, P., Zhang, J., Tong, X.: Real-time rendering of deformable heterogeneous translucent objects using multiresolution splatting. Vis. Comput. 28(6–8), 701–711 (2012)

  3. 3.

    Chen, J., Wang, B.: High quality solid texture synthesis using position and index histogram matching. Vis. Comput. 26(4), 253–262 (2010)

  4. 4.

    Chen, Y., Tong, X., Wang, J., Lin, S., Guo, B., Shum, H.-Y.: Shell texture functions. In: ACM SIGGRAPH 2004 Papers, SIGGRAPH’04, pp. 343–353. ACM, New York (2004)

  5. 5.

    Chen, Y., Ip, H.H.-S.: Texture evolution: 3d texture synthesis from single 2d growable texture pattern. Vis. Comput. 20(10), 650–664 (2004)

  6. 6.

    Dong, Y., Lefebvre, S., Tong, X., Drettakis, G.: Lazy solid texture synthesis. In: Computer Graphics Forum (Proceedings of the Eurographics Symposium on Rendering) (2008)

  7. 7.

    Donner, C., Wann Jensen, H.: A spectral bssrdf for shading human skin. In: Rendering Techniques 2006: 17th Eurographics Workshop on Rendering, pp. 409–418 (2006)

  8. 8.

    Donner, C., Weyrich, T., d’Eon, E., Ramamoorthi, R., Rusinkiewicz, S.: A layered, heterogeneous reflectance model for acquiring and rendering human skin. In: ACM SIGGRAPH Asia 2008 Papers, SIGGRAPH’08, pp. 1–12. ACM, New York (2008)

  9. 9.

    Du, S.-P., Hu, S.-M., Martin, R.R.: Semiregular solid texturing from 2d image exemplars. IEEE Trans. Vis. Comput. Graph. 19(3), 460–469 (2013)

  10. 10.

    Eisenacher, C., Lefebvre, S., Stamminger, M.: Texture synthesis from photographs. In: Proceedings of the Eurographics conference (2008)

  11. 11.

    Fuchs, C., Goesele, M., Chen, T., Seidel, H.-P.: An empirical model for heterogeneous translucent objects. In: ACM SIGGRAPH 2005 Sketches, SIGGRAPH’05. ACM, New York (2005)

  12. 12.

    Han, J., Zhou, K., Wei, L.-Y., Gong, M., Bao, H., Zhang, X., Guo, B.: Fast example-based surface texture synthesis via discrete optimization. Vis. Comput. 9(11), 918–925 (2006)

  13. 13.

    Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analogies. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’01, pp. 327–340. ACM, New York (2001)

  14. 14.

    Jagnow, R., Dorsey, J., Rushmeier, H.: Stereological techniques for solid textures. ACM Trans. Graph. 23, 329–335 (2004)

  15. 15.

    Wann Jensen, H., Buhler, J.: A rapid hierarchical rendering technique for translucent materials. ACM Trans. Graph. 21(3), 576–581 (2002)

  16. 16.

    Wann Jensen, H., Marschner, S.R., Levoy, M., Hanrahan, P.: A practical model for subsurface light transport. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’01, pp. 511–518. ACM, New York (2001)

  17. 17.

    Kopf, J., Fu, C.-W., Cohen-Or, D., Deussen, O., Lischinski, D., Wong, T.-T.: Solid texture synthesis from 2d exemplars. ACM Trans. Graph. 26(3), 2 (2007)

  18. 18.

    Lefebvre, S., Hoppe, H.: Appearance-space texture synthesis. ACM Trans. Graph. 25(3), 541–548 (2006)

  19. 19.

    Mount, D., Arya, S.:. Ann: A Library for Approximate Nearest Neighbor Searching (1997)

  20. 20.

    Peers, P., vom Berge, K., Matusik, W., Ramamoorthi, R., Lawrence, J., Rusinkiewicz, S., Dutré, P.: A compact factored representation of heterogeneous subsurface scattering. In: ACM SIGGRAPH 2006 Papers, SIGGRAPH’06, pp. 746–753. ACM, New York (2006)

  21. 21.

    Perlin, K.: An image synthesizer. In: Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’85, pp. 287–296. ACM, New York (1985)

  22. 22.

    Pietroni, N., Otaduy, M.A., Bickel, B., Ganovelli, F., Gross, M.: Texturing internal surfaces from a few cross sections. Comput. Graph. Forum 26(3), 637–644 (2007)

  23. 23.

    Pietroni, N., Cignoni, P., Otaduy, M.A., Scopigno, R.: Solid-texture synthesis: a survey. IEEE Comput. Graph. Appl. 30(4), 74–89 (2010)

  24. 24.

    Qin, X., Yang, Y.-H.: Aura 3d textures. IEEE Trans. Vis. Comput. Graph. 13(2), 379–389 (2007)

  25. 25.

    Robertson, M.A., Borman, S., Stevenson, R.L.: Estimation-theoretic approach to dynamic range enhancement using multiple exposures. J. Electron. Imaging 12(2), 219–285 (2003)

  26. 26.

    Song, Y., Chen, Y., Tong, X., Lin, S., Shi, J., Guo, B., Shum, H.-Y.: Shell radiance texture functions. Vis. Comput. 21(8–10), 774–782 (2005)

  27. 27.

    Song, Y., Tong, X., Pellacini, F., Peers, P.: Subedit: a representation for editing measured heterogeneous subsurface scattering. In: ACM SIGGRAPH 2009 Papers, SIGGRAPH’09, pp. 1–10. ACM, New York (2009)

  28. 28.

    Tong, X., Wang, J., Lin, S., Guo, B., Shum, H.-Y.: Modeling and rendering of quasi-homogeneous materials. In: ACM SIGGRAPH 2005 Papers, SIGGRAPH’05, pp. 1054–1061. ACM, New York (2005)

  29. 29.

    Tong, X., Zhang, J., Liu, L., Wang, X., Guo, B., Shum, H.-Y.: Synthesis of bidirectional texture functions on arbitrary surfaces. ACM Trans. Graph. 21, 665–672 (2002)

  30. 30.

    Wang, J., Zhao, S., Tong, X., Lin, S., Lin, Z., Dong, Y., Guo, B., Shum, H.-Y.: Modeling and rendering of heterogeneous translucent materials using the diffusion equation. ACM Trans. Graph. 27, 9 (2008)

  31. 31.

    Wang, Y., Wang, J., Holzschuch, N., Subr, K., Yong, J.-H., Guo, B.: Real-time rendering of heterogeneous translucent objects with arbitrary shapes. In: Computer Graphics Forum (Proceedings of Eurographics 2010) (2010)

  32. 32.

    Worley, S.: A cellular texture basis function. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’96, pp. 291–294. ACM, New York (1996)

  33. 33.

    Wu, Q., Yu, Y.: Feature matching and deformation for texture synthesis. ACM Trans. Graph. 23(3), 364–367 (2004)

  34. 34.

    Zhang, G.-X., Du, S.-P., Lai, Y.-K., Hu, S.-M.: Efficient synthesis of gradient solid textures. Graph. Models 75(3), 104–117 (2012)

  35. 35.

    Zhang, G.-X., Du, S.-P., Lai, Y.-K., Ni, T., Hu, S.-M.: Sketch guided solid texturing. Graph. Models 73(3), 59–73 (2011)

Download references

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2013031191).

Author information

Correspondence to Kwan H. Lee.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(AVI 9.4 MB)

(AVI 9.4 MB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Seo, M.K., Kim, H. & Lee, K.H. Solid texture synthesis for heterogeneous translucent materials. Vis Comput 30, 271–283 (2014) doi:10.1007/s00371-013-0843-z

Download citation

Keywords

  • Solid textures
  • Heterogeneous translucent materials
  • Measured scattering data