Advertisement

Efficient collision detection for composite finite element simulation of cuts in deformable bodies

  • 633 Accesses

  • 16 Citations

Abstract

Composite finite elements (CFEs) based on a hexahedral discretization of the simulation domain have recently shown their effectiveness in physically based simulation of deformable bodies with changing topology. In this paper we present an efficient collision detection method for CFE simulation of cuts. Our method exploits the specific characteristics of CFEs, i.e., the fact that the number of simulation degrees of freedom is significantly reduced. We show that this feature not only leads to a faster deformation simulation, but also enables a faster collision detection. To address the non-conforming properties of geometric composition and hexahedral discretization, we propose a topology-aware interpolation approach for the computation of penetration depth. We show that this approach leads to accurate collision detection on complex boundaries. Our results demonstrate that by using our method cutting on high-resolution deformable bodies including collision detection and response can be performed at interactive rates.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Hackbusch, W., Sauter, S.: Composite finite elements for the approximation of pdes on domains with complicated micro-structures. Numer. Math. 75, 447–472 (1997)

  2. 2.

    Nesme, M., Kry, P.G., Jeřábková, L., Faure, F.: Preserving topology and elasticity for embedded deformable models. ACM Trans. Graph. 28, 52:1–52:9 (2009)

  3. 3.

    Dick, C., Georgii, J., Westermann, R.: A hexahedral multigrid approach for simulating cuts in deformable objects. IEEE Trans. Vis. Comput. Graph. 17(11), 1663–1675 (2011)

  4. 4.

    Jeřábková, L., Bousquet, G., Barbier, S., Faure, F., Allard, J.: Volumetric modeling and interactive cutting of deformable bodies. Prog. Biophys. Mol. Biol. 103(2–3), 217–224 (2010)

  5. 5.

    Wu, J., Dick, C., Westermann, R.: Interactive high-resolution boundary surfaces for deformable bodies with changing topology. In: Workshop on Virtual Reality Interaction and Physical Simulation (VRIPHYS), pp. 29–38 (2011)

  6. 6.

    Sauter, S., Warnke, R.: Composite finite elements for elliptic boundary value problems with discontinuous coefficients. Computing 77(1), 29–55 (2006)

  7. 7.

    Preusser, T., Rumpf, M., Schwen, L.O.: Finite element simulation of bone microstructures. In: Proceedings of the 14th Workshop on the Finite Element Method in Biomedical Engineering, Biomechanics and Related Fields, pp. 52–66 (2007). University of Ulm, July 2007

  8. 8.

    Liehr, F., Preusser, T., Rumpf, M., Sauter, S., Schwen, L.O.: Composite finite elements for 3d image based computing. Comput. Vis. Sci. 12(4), 171–188 (2009)

  9. 9.

    Seiler, M., Steinemann, D., Spillmann, J., Harders, M.: Robust interactive cutting based on an adaptive octree simulation mesh. Vis. Comput. 27(6), 519–529 (2011)

  10. 10.

    Pietroni, N., Ganovelli, F., Cignoni, P., Scopigno, R.: Splitting cubes: a fast and robust technique for virtual cutting. Vis. Comput. 25(3), 227–239 (2009)

  11. 11.

    Ju, T., Losasso, F., Schaefer, S., Warren, J.: Dual contouring of hermite data. ACM Trans. Graph. 21, 339–346 (2002)

  12. 12.

    Teschner, M., Kimmerle, S., Heidelberger, B., Zachmann, G., Raghupathi, L., Fuhrmann, A., Cani, M.-P., Faure, F., Magnenat-Thalmann, N., Straßer, W., Volino, P.: Collision detection for deformable objects. Comput. Graph. Forum 24(1), 61–81 (2005)

  13. 13.

    Teschner, M., Heidelberger, B., Müller, M., Pomerantes, D., Gross, M.H.: Optimized spatial hashing for collision detection of deformable objects. In: The Vision, Modeling, and Visualization Conference, pp. 47–54 (2003)

  14. 14.

    Hoff, K.E. III, Zaferakis, A., Lin, M., Manocha, D.: Fast and simple 2d geometric proximity queries using graphics hardware. In: I3D ’01: Symposium on Interactive 3D Graphics, pp. 145–148. ACM, New York (2001)

  15. 15.

    Heidelberger, B., Teschner, M., Gross, M.: Detection of collisions and self-collisions using image-space techniques. J. WSCG 12(3), 145–152 (2004)

  16. 16.

    Faure, F., Barbier, S., Allard, J., Falipou, F.: Image-based collision detection and response between arbitrary volume objects. In: SCA ’08: Symposium on Computer Animation, pp. 155–162. Eurographics, Zurich (2008)

  17. 17.

    Otaduy, M., Chassot, O., Steinemann, D., Gross, M.: Balanced hierarchies for collision detection between fracturing objects. In: VR ’07: IEEE Virtual Reality Conference, pp. 83–90 (March 2007)

  18. 18.

    Heo, J.-P., Seong, J.-K., Kim, D., Otaduy, M.A., Hong, J.-M., Tang, M., Yoon, S.-E.: Fastcd: fracturing-aware stable collision detection. In: SCA ’10: Symposium on Computer Animation, pp. 149–158 (2010)

  19. 19.

    Glondu, L., Schvartzman, S., Marchal, M., Dumont, G., Otaduy, M.: Efficient collision detection for brittle fracture. In: SCA ’12: Symposium on Computer Animation, pp. 285–294 (2012)

  20. 20.

    James, D., Pai, D.: Bd-tree: output-sensitive collision detection for reduced deformable models. ACM Trans. Graph. 23, 393–398 (2004)

  21. 21.

    Schvartzman, S.C., Gascón, J., Otaduy, M.A.: Bounded normal trees for reduced deformations of triangulated surfaces. In: SCA ’09: Symposium on Computer Animation, pp. 75–82 (2009)

  22. 22.

    Barbič, J., James, D.: Subspace self-collision culling. ACM Trans. Graph. 29(4), 81 (2010)

  23. 23.

    Hirota, G., Fisher, S., State, A., Lee, C., Fuchs, H.: An implicit finite element method for elastic solids in contact. In: Proc. the Computer Animation, pp. 136–254 (2001)

  24. 24.

    Fisher, S., Lin, M.C.: Deformed distance fields for simulation of non-penetrating flexible bodies. In: Eurographic Workshop on Computer Animation and Simulation, pp. 99–111 (2001)

  25. 25.

    McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran, J., Sifakis, E.: Efficient elasticity for character skinning with contact and collisions. ACM Trans. Graph. 30, 37:1–37:12 (2011)

  26. 26.

    Todd, D.: b4wind user’s guide—trilinear interpolation. www.grc.nasa.gov/WWW/winddocs/utilities/b4wind_guide/trilinear.html [Online; accessed, 30 July 2012]

  27. 27.

    Jones, M., Baerentzen, J., Sramek, M.: 3d distance fields: a survey of techniques and applications. IEEE Trans. Vis. Comput. Graph. 12, 581–599 (2006)

  28. 28.

    Cuisenaire, O.: Region growing Euclidean distance transforms. In: The 9th International Conference on Image Analysis and Processing, pp. 263–270 (1997)

  29. 29.

    Satherley, R., Jones, M.: Hybrid distance field computation. In: Proc. Volume Graphics, pp. 195–209 (2001)

  30. 30.

    Larsen, E., Gottschalk, S., Lin, M.C., Manocha, D.: Fast proximity queries with swept sphere volumes. Technical report TR99-018, Department of Computer Science, University of North Carolina, 1999

  31. 31.

    Wu, J., Wang, D., Wang, C., Zhang, Y.: Toward stable and realistic haptic interaction for tooth preparation simulation. J. Comput. Inf. Sci. Eng. 10(2), 021007 (2010)

  32. 32.

    Barbič, J., James, D.L.: Six-dof haptic rendering of contact between geometrically complex reduced deformable models. IEEE Trans. Haptics 1, 39–52 (2008)

Download references

Acknowledgements

The first author, Jun Wu, is supported by the Erasmus Mundus TANDEM, an European Commission funded program.

Author information

Correspondence to Jun Wu.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(AVI 18.8 MB)

(AVI 18.8 MB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wu, J., Dick, C. & Westermann, R. Efficient collision detection for composite finite element simulation of cuts in deformable bodies. Vis Comput 29, 739–749 (2013) doi:10.1007/s00371-013-0810-8

Download citation

Keywords

  • Cutting
  • Deformable bodies
  • Collision detection
  • Composite finite elements