The Visual Computer

, Volume 29, Issue 12, pp 1293–1302 | Cite as

Visual simulation of turbulent fluids using MLS interpolation profiles

  • Sun-Tae Kim
  • Jeong-Mo HongEmail author
Original Article


A detailed description of turbulent fluids based on numerical simulation is an important research topic required by many visual effects. We propose a novel method to simulate fluids with turbulent small-scale details. By inserting diffusive derivatives and divergence-free constraints to moving least-squares (MLS) fitting, we upgrade the velocity interpolation method for existing fluid solvers to enhance the subgrid accuracy. The time-step restriction of asymptotic property of diffusive derivatives is resolved by means of coupling to the constrained interpolation profile (CIP) advection framework. The proposed constrained moving least-squares interpolation profile (CMIP) method provides intuitive control over turbulence through the adjustment of one parameter as though controlling the Reynolds number with an inviscid model. The proposed method generates improved visuals of the highly turbulent fluid and is complementary to existing techniques that are currently being used.


Moving least-squares Turbulent smoke Simulation control Fluid simulation 



This Research is supported by Ministry of Culture, Sports and Tourism (MCST) and Korea Creative Content Agency (KOCCA) in the Culture Technology (CT) Research & Development Program 2012.

Supplementary material

(MPG 31.4 MB)


  1. 1.
    Bridson, R., Houriham, J., Nordenstam, M.: Curl-noise for procedural fluid flow. ACM Trans. Graph. 26(3), 46 (2007). SIGGRAPH Proc. CrossRefGoogle Scholar
  2. 2.
    Chorin, A.: A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2, 12–26 (1967) CrossRefzbMATHGoogle Scholar
  3. 3.
    Fedkiw, R., Stam, J., Jensen, H.: Visual simulation of smoke. In: Proc. of SIGGRAPH 01, pp. 15–22 (2001) Google Scholar
  4. 4.
    Feldman, B., O’Brien, J., Klingner, B.: Animating gases with hybrid meshes. ACM Trans. Graph. 24(3), 904–909 (2005). SIGGRAPH Proc. CrossRefGoogle Scholar
  5. 5.
    Foster, N., Metaxas, D.: Realistic animation of liquids. Graph. Models Image Process. 58, 471–483 (1996) CrossRefGoogle Scholar
  6. 6.
    Foster, N., Metaxas, D.: Modeling the motion of a hot, turbulent gas. In: Proc. of SIGGRAPH ’97, pp. 181–188 (1997) Google Scholar
  7. 7.
    Fresch, U.: Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press, Cambridge (1996) Google Scholar
  8. 8.
    Gao, Y., Li, C.F., Hu, S.M., Barsky, B.A.: Simulating gaseous fluids with low and high speeds. Comput. Graph. Forum 28(7), 1845–1852 (2009). Proc. Pacific Graphics, 2009 CrossRefGoogle Scholar
  9. 9.
    Greenwood, S.T., House, D.H.: Better with bubbles: enhancing the visual realism of simulated fluid. In: Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Animat., pp. 287–296 (2004) CrossRefGoogle Scholar
  10. 10.
    Hong, J.M., Kim, C.H.: Discontinuous fluids. ACM Trans. Graph. 24(3), 915–920 (2005). SIGGRAPH Proc. CrossRefGoogle Scholar
  11. 11.
    Hong, J.M., Shinar, T., Fedkiw, R.: Wrinkled flames and cellular patterns. ACM Trans. Graph. 26(3), 471–476 (2007). SIGGRAPH Proc. CrossRefGoogle Scholar
  12. 12.
    Hong, J.M., Lee, H.Y., Yoon, J.C., Kim, C.H.: Bubbles alive. ACM Trans. Graph. 27(3), 481–484 (2008). SIGGRAPH Proc. CrossRefGoogle Scholar
  13. 13.
    Hong, J.M., Yoon, Y.C., Kim, C.H.: Divergence-constrained moving least squares for fluid simulation. Comput. Animat. Virtual Worlds 19(3–4), 469–477 (2008). CASA Proc. CrossRefGoogle Scholar
  14. 14.
    Huerta, A., Vidal, Y., Villon, P.: Pseudo-divergence-free element free Galerkin method for incompressible fluid flow. Comput. Methods Appl. Mech. Eng. 193, 1119–1136 (2004) MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kim, J., Cha, D., Chang, B., Koo, B., Ihm, I.: Practical animation of turbulent splashing water. In: Proc. of the 2006 ACM SIGGRAPH/Eurographics Symp. on Comput. Animat., pp. 335–344 (2006) Google Scholar
  16. 16.
    Kim, B., Liu, Y., Llamas, I., Rossignac, J.: Advections with significantly reduced dissipation and diffusion. IEEE Trans. Vis. Comput. Graph. 13, 135–144 (2007) CrossRefGoogle Scholar
  17. 17.
    Kim, D., Song, O., Ko, H.S.: A semi-Lagrangian CIP fluid solver without dimensional splitting. Comput. Graph. Forum 27(2), 467–475 (2008). Proc. Eurographics CrossRefGoogle Scholar
  18. 18.
    Kim, T., Thurey, N., James, D., Gross, M.: Wavelet turbulence for fluid simulation. ACM Trans. Graph. 27(3), 50 (2008). SIGGRAPH Proc. CrossRefGoogle Scholar
  19. 19.
    Kim, D., Song, O.Y., Ko, H.S.: Stretching and wiggling liquids. ACM Trans. Graph. 28(5), 120 (2009) Google Scholar
  20. 20.
    Lentine, M., Zheng, W., Fedkiw, R.: A novel algorithm for incompressible flow using only a coarse grid projection. ACM Trans. Graph. 29, 114:1–114:9 (2010) CrossRefGoogle Scholar
  21. 21.
    Lorenz, E.N.: The Essence of Chaos. University of Washington Press, Seattle (1996) Google Scholar
  22. 22.
    Losasso, F., Talton, J., Kwatra, N., Fedkiw, R.: Two-way coupled SPH and particle level set fluid simulation. IEEE Trans. Vis. Comput. Graph. 14(4), 797–804 (2008) CrossRefGoogle Scholar
  23. 23.
    Narain, R., Sewall, J., Carlson, M., Lin, M.: Fast animation of turbulence using energy transport and procedural synthesis. ACM Trans. Graph. 27(5), 166 (2008). SIGGRAPH Asia Proc. CrossRefGoogle Scholar
  24. 24.
    Nayroles, B., Touzot, G., Villon, P.: Generalizing the finite element method: diffuse approximation and diffuse elements. Comput. Mech. 10, 307–318 (1992) CrossRefzbMATHGoogle Scholar
  25. 25.
    Nealen, A.: An as-short-as possible introduction to the least squares, weighted least squares and moving least squares methods for scattered data approximation and interpolation. Tech. rep., TU Darmstadt (2004) Google Scholar
  26. 26.
    Nguyen, D., Fedkiw, R., Jensen, H.: Physically based modeling and animation of fire. ACM Trans. Graph. 29, 721–728 (2002). SIGGRAPH Proc. Google Scholar
  27. 27.
    Pfaff, T., Thuerey, N., Gross, M.: Lagrangian vortex sheets for animating fluids. ACM SIGGRAPH 2012 Papers (2012) Google Scholar
  28. 28.
    Schechter, H., Bridson, R.: Evolving sub-grid turbulence for smoke animation. In: Proc. of the 2008 ACM/Eurographics Symp. on Comput. Animat. (2008) Google Scholar
  29. 29.
    Selle, A., Rasmussen, N., Fedkiw, R.: A vortex particle method for smoke, water and explosions. ACM Trans. Graph. 24(3), 910–914 (2005). SIGGRAPH Proc. CrossRefGoogle Scholar
  30. 30.
    Selle, A., Fedkiw, R., Kim, B.M., Liu, Y., Rossignac, J.: An unconditionally stable MacCormack method. J. Sci. Comput. 35, 350–371 (2008) MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Shen, C., O’Brien, J.F., Shewchuk, J.: Interpolating and approximating implicit surfaces from polygon soup. ACM Trans. Graph. 31, 321–328 (2004). SIGGRAPH Proc. Google Scholar
  32. 32.
    Song, O., Shin, H., Ko, H.S.: Stable but non-dissipative water. ACM Trans. Graph. 24(1), 81–97 (2005) CrossRefGoogle Scholar
  33. 33.
    Stam, J.: Stable fluids. In: Proc. of SIGGRAPH 99, pp. 121–128 (1999) Google Scholar
  34. 34.
    Thuerey, N., Sadlo, F., Schirm, S., Muller-Fischer, M., Gross, M.: Real-time simulations of bubbles and foam within a shallow water framework. In: Proc. of the 2007 ACM SIGGRAPH/Eurographics Symp. on Comput. Animat., pp. 191–198 (2007) Google Scholar
  35. 35.
    Yabe, T., Aoki, T.: A universal solver for hyperbolic equations by cubic-polynomial interpolation I. One-dimensional solver. Comput. Phys. Commun. 66(2–3), 219–232 (1991) MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Yabe, T., Ishikawa, T., Wang, P.Y., Aoki, T., Kadota, Y., Ikeda, F.: A universal solver for hyperbolic equations by cubic-polynomial interpolation II. Two- and three-dimensional solvers. Comput. Phys. Commun. 66(2–3), 233–242 (1991) MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Dongguk University—SeoulSeoulKorea

Personalised recommendations