Procedural models for cartoon cracks and fractures animations

  • 275 Accesses

  • 1 Citations


We present an approach for animating cracks and fractures in cartoon style. In our method we take a 2D hand-drawn object as input and then construct a 2.5D model of the object in order to approximate the object volume. Next, we generate the Voronoi textures on the 2.5D object model for visual abstraction of cartoon cracks. Further, cracking gaps on the Voronoi textures are widened progressively until Voronoi cells split apart and finally fall onto ground according to simplified physical rules. With minimum user intervention, our model is able to generate cartoon cracks and fractures animations procedurally, as demonstrated by examples given in the paper.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Skjeltorp, A.T., Meakin, P.: Fracture in microsphere monolayers studied by experiment and computer simulation. Nature 335, 424–426 (1988)

  2. 2.

    Federl, P., Prusinkiewicz, P.: A texture model for cracked surfaces, with an application to tree bark. In: Proceedings of the 7th Western Computer Graphics Symposium (1996)

  3. 3.

    Hirota, K., Tanoue, Y., Kaneko, T.: Generation of crack patterns with a physical model. Vis. Comput. 14(3), 126–137 (1998)

  4. 4.

    Hirota, K., Tanoue, Y., Kaneko, T.: Simulation of three-dimensional cracks. Vis. Comput. 16, 371–378 (2000)

  5. 5.

    Gobron, S., Chiba, N.: Crack pattern simulation based on 3d surface cellular automaton. In: Proceedings of the International Conference on Computer Graphics (2000)

  6. 6.

    Gobron, S., Chiba, N.: Simulation of peeling using 3d-surface cellular automata. In: Proceedings of the 9th Pacific Conference on Computer Graphics and Applications (2001)

  7. 7.

    Paquette, E., Poulin, P., Drettakis, G.: The simulation of paint cracking and peeling. In: Proceedings of Graphics Interface (2002)

  8. 8.

    Federl, P., Prusinkiewicz, P.: Modelling fracture formation in bi-layered materials, with applications to tree bark and drying mud. In: Proceedings of the 13th Western Computer Graphics Symposium (2002)

  9. 9.

    Federl, P., Prusinkiewicz, P.: Finite element model of fracture formation on growing surfaces. In: Lecture Notes in Computer Science, vol. 3037, pp. 138–145 (2004)

  10. 10.

    Iben, H., O’Brien, J.: Generating surface crack patterns. Graph. Models 91, 198–208 (2009)

  11. 11.

    Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. Comput. Graph. 21, 205–214 (1987)

  12. 12.

    Terzopoulos, D., Fleischer, K.: Modeling inelastic deformation: viscoelasticity, plasticity, fracture. Comput. Graph. 22, 269–278 (1988)

  13. 13.

    Norton, A., Turk, G., Bacon, B., Gerth, J., Sweeney, P.: Animation of fracture by physical modeling. Vis. Comput. 7(4), 210–219 (1991)

  14. 14.

    Mazarek, O., Martins, C., Amanatides, J.: Animating exploding objects. In: Proceedings of the Graphics Interface, pp. 211–218 (1999)

  15. 15.

    Neff, M., Fiume, E.: A visual model for blast waves and fracture. In: Proceedings of Graphics Interface, pp. 193–202 (1999)

  16. 16.

    O’Brien, J., Hodgins, J.: Graphical modeling and animation of brittle fracture. Comput. Graph. 33, 137–146 (1999)

  17. 17.

    O’Brien, J., Bargteil, A., Hodgins, J.: Graphical Modeling and Animation of Ductile Fracture. In: Proceedings of ACM SIGGRAPH (2002)

  18. 18.

    Muller, M., Gross, M.: Interactive virtual materials. In: Proceedings of Graphics Interface (2004)

  19. 19.

    Muller, M., Teschner, M., Gross, M.: Physically-based simulation of objects represented by surface meshes. In: Proceedings of the Computer Graphics International (2004)

  20. 20.

    Molino, N., Bao, Z., Fedkiw, R.: A virtual node algorithm for changing mesh topology during simulation. ACM Trans. Graph. 23(3), 385–392 (2004)

  21. 21.

    Gingold, Y., Secord, A., Han, J.Y., Grinspun, E., Zorin, D.: A discrete model for inelastic deformation of thin shells. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2004)

  22. 22.

    Pauly, M., Keiser, R., Adams, B., Dutre, P., Gross, M., Guibas, L.J.: Meshless animation of fracturing solids. In: Proceedings of the ACM SIGGRAPH (2005)

  23. 23.

    Worley, S.: A cellular texture basis function. In: Proceedings of SIGGRAPH, pp. 291–294 (1996)

  24. 24.

    Raghavachary, S.: Fracture generation on polygonal meshes using Voronoi polygons. In: Proceedings of SIGGRAPH (Sketches), p. 187 (2002)

  25. 25.

    Mould, D.: Image-guided fracture. In: Proceedings of Graphics Interface (2005)

  26. 26.

    Wyvill, B., van Overveld, K., Carpendale, S.: Rendering cracks in batik. In: Proceedings of the 3rd International Symposium on Nonphotorealistic Animation and Rendering (2004)

  27. 27.

    Martinet, A., Galin, E., Desbenoit, B., Akkouche, S.: Procedural modeling of cracks and fractures. In: Proceedings of International Conference on Shape Modeling and Applications (2004)

  28. 28.

    Aurenhammer, F.: Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991)

  29. 29.

    Hoff, K.E., Culver, T., Keyser, J., Lin, M., Manocha, D.: Fast computation of generalized Voronoi diagrams using graphics hardware. In: Proceeding of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 277–286 (1999)

  30. 30.

    Lischinski, D.: Incremental Delaunay triangulation. In: Heckbert, P. (ed.) Graphics Gems IV, pp. 47–59. Academic Press, Boston (1994)

  31. 31.

    Nvdia: PhysX. (2012). Accessed 22 March 2012

Download references


This work is supported by the State Key Program of National Natural Science Foundation of China (No. 60933007), the Key Technologies R&D Program of China (No. 2007BAH11B02).

Author information

Correspondence to Jinhui Yu.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(MPG 53.3 MB)

(MPG 53.3 MB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liao, J., Yu, J. Procedural models for cartoon cracks and fractures animations. Vis Comput 28, 869–875 (2012).

Download citation


  • Procedural modeling
  • Cracks and fractures
  • Non-photorealistic rendering
  • Cartoon animation