Advertisement

The Visual Computer

, Volume 28, Issue 6–8, pp 713–721 | Cite as

Fast image dehazing using guided joint bilateral filter

  • Chunxia XiaoEmail author
  • Jiajia Gan
Original Article

Abstract

In this paper, we propose a new fast dehazing method from single image based on filtering. The basic idea is to compute an accurate atmosphere veil that is not only smoother, but also respect with depth information of the underlying image. We firstly obtain an initial atmosphere scattering light through median filtering, then refine it by guided joint bilateral filtering to generate a new atmosphere veil which removes the abundant texture information and recovers the depth edge information. Finally, we solve the scene radiance using the atmosphere attenuation model. Compared with exiting state of the art dehazing methods, our method could get a better dehazing effect at distant scene and places where depth changes abruptly. Our method is fast with linear complexity in the number of pixels of the input image; furthermore, as our method can be performed in parallel, thus it can be further accelerated using GPU, which makes our method applicable for real-time requirement.

Keywords

Image dehazing Filtering Image processing Bilateral filter 

Notes

Acknowledgements

This work was partly supported by the National Basic Research Program of China (No. 2012CB725303), NSFC (No. 61070081), Open Project Program of the State Key Laboratory for Novel Software Technology (kfkt2010B05), the Open Project Program of the State Key Lab of CAD&CG (Grant No. A1208), and Luojia Outstanding Young Scholar Program of Wuhan University. Thanks to Peng Yin for the thoughtful discussions on the guided joint filter, and thanks to Xiangyun Hu for proofreading the manuscript.

Supplementary material

(AVI 476 kB)

(AVI 424 kB)

371_2012_679_MOESM3_ESM.avi (137 kb)
(AVI 137 kB)
371_2012_679_MOESM4_ESM.avi (114 kb)
(AVI 114 kB)

References

  1. 1.
    Deriche, R.: (1993) Recursively implementing the Gaussian and its derivatives. Research Report 1893, INRIA Google Scholar
  2. 2.
    Fattal, R.: Single image dehazing. In: ACM Transactions on Graphics (TOG), vol. 27, p. 72. ACM, New York (2008) Google Scholar
  3. 3.
    He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. In: CVPR 2009, pp. 1956–1963. IEEE Press, New York (2009) Google Scholar
  4. 4.
    He, K., Sun, J., Tang, X.: Guided image filtering. In: ECCV 2010, pp. 1–14 (2010) CrossRefGoogle Scholar
  5. 5.
    Kopf, J., Cohen, M., Lischinski, D., Uyttendaele, M.: Joint bilateral upsampling. ACM Trans. Graph. 26(3), 96 (2007) CrossRefGoogle Scholar
  6. 6.
    Kopf, J., Neubert, B., Chen, B., Cohen, M., Cohen-Or, D., Deussen, O., Uyttendaele, M., Lischinski, D.: Deep photo: Model-based photograph enhancement and viewing. In: ACM Transactions on Graphics (TOG), vol. 27, p. 116. ACM, New York (2008) Google Scholar
  7. 7.
    Levin, A., Lischinski, D., Weiss, Y.: A closed-form solution to natural image matting. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 228–242 (2008) CrossRefGoogle Scholar
  8. 8.
    Narasimhan, S., Nayar, S.: Chromatic framework for vision in bad weather. In: CVPR 2000, vol. 1, pp. 598–605. IEEE Press, New York (2000) Google Scholar
  9. 9.
    Narasimhan, S., Nayar, S.: Interactive (de) weathering of an image using physical models. In: IEEE Workshop on Color and Photometric Methods in Computer Vision (2003) Google Scholar
  10. 10.
    Narasimhan, S., Nayar, S.: Contrast restoration of weather degraded images. In: ACM SIGGRAPH ASIA 2008 Courses. ACM, New York (2008) Google Scholar
  11. 11.
    Narasimhan, S., Nayar, S.: Vision and the atmosphere. In: ACM Siggraph Asia 2008 Courses, p. 69. ACM, New York (2008) Google Scholar
  12. 12.
    Paris, S., Kornprobst, P., Tumblin, J.: Bilateral Filtering: Theory and Applications. Now, Boston (2009) Google Scholar
  13. 13.
    Petschnigg, G., Szeliski, R., Agrawala, M., Cohen, M., Hoppe, H., Toyama, K.: Digital photography with flash and no-flash image pairs. In: ACM Transactions on Graphics (TOG), vol. 23, pp. 664–672. ACM, New York (2004) Google Scholar
  14. 14.
    Schechner, Y., Narasimhan, S., Nayar, S.: Instant dehazing of images using polarization. In: CVPR 2001, vol. 1, pp. 1–325. IEEE Press, New York (2001), Google Scholar
  15. 15.
    Schechner, Y., Narasimhan, S., Nayar, S.: Polarization-based vision through haze. In: ACM SIGGRAPH ASIA 2008 Courses. ACM, New York (2008) Google Scholar
  16. 16.
    Shwartz, S., Namer, E., Schechner, Y.: Blind haze separation. In: CVPR 2006, vol. 2, pp. 1984–1991 (2006) Google Scholar
  17. 17.
    Tan, R.: Visibility in bad weather from a single image. In: CVPR 2008 (2008) Google Scholar
  18. 18.
    Tarel, J., Hautiere, N.: Fast visibility restoration from a single color or gray level image. In: ICCV 2009, pp. 2201–2208. IEEE Press, New York (2009) Google Scholar
  19. 19.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: ICCV 1998, pp. 839–846. IEEE Press, New York (1998) Google Scholar
  20. 20.
    Weiss, B.: Fast median and bilateral filtering. In: ACM Transactions on Graphics (TOG), vol. 25, pp. 519–526. ACM, New York (2006) Google Scholar
  21. 21.
    Xiao, C., Liu, M.: Efficient mean-shift clustering using Gaussian kd-tree. In: Computer Graphics Forum, vol. 29, pp. 2065–2073. Wiley, New York (2010) Google Scholar
  22. 22.
    Xiao, C., Liu, M., Yongwei, N., Dong, Z.: Fast exact nearest patch matching for patch-based image editing and processing. IEEE Trans. Vis. Comput. Graph. 17(8), 1122–1134 (2011) CrossRefGoogle Scholar
  23. 23.
    Xiao, C., Nie, Y., Tang, F.: Efficient edit propagation using hierarchical data structure. IEEE Trans. Vis. Comput. Graph. 17(8), 1135–1147 (2011) CrossRefGoogle Scholar
  24. 24.
    Yang, Q., Tan, K., Ahuja, N.: Real-time o (1) bilateral filtering. In: CVPR 2009, pp. 557–564. IEEE Press, New York (2009) Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.School of ComputerWuhan UniversityWuhanChina

Personalised recommendations