Advertisement

Fast level set image and video segmentation using new evolution indicator operators

  • 513 Accesses

  • 4 Citations

Abstract

We propose an effective level set evolution method for robust object segmentation in real images. We construct an effective region indicator and an multiscale edge indicator, and use these two indicators to adaptively guide the evolution of the level set function. The multiscale edge indicator is defined in the gradient domain of the multiscale feature-preserving filtered image. The region indicator is built on the similarity map between image pixels and user specified interest regions, where the similarity map is computed using Gaussian Mixture Models (GMM). Then we combine these two methods to develop a new mixing edge stop function, which makes the level set method more robust to initial active contour setting, and forces the level set to evolve adaptively based on the image content. Furthermore, we apply an acceleration approach to speed up our evolution process, which yields real time segmentation performance. Finally, we extend the proposed approach to video segmentation for achieving effective target tracking results. As the results show, our approach is effective for image and video segmentation and works well to accurately detect the complex object boundaries in real-time.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Adalsteinsson, D., Sethian, J.: A fast level set method for propagating interfaces. J. Comput. Phys. 118(2), 269–277 (1995)

  2. 2.

    Bai, X., Sapiro, G.: A geodesic framework for fast interactive image and video segmentation and matting (2007)

  3. 3.

    Boykov, Y., Jolly, M.: Interactive graph cuts for optimal boundary & region segmentation of objects in ND images. In: ICCV 2001, vol. 1, pp. 105–112. IEEE, New York (2001)

  4. 4.

    Caselles, V., Catté, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numer. Math. 66(1), 1–31 (1993)

  5. 5.

    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

  6. 6.

    Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

  7. 7.

    Chen, J., Paris, S., Durand, F.: Real-time edge-aware image processing with the bilateral grid. ACM Trans. Graph. (TOG) 26(3), 103 (2007)

  8. 8.

    Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. Int. J. Comput. Vis. 72(2), 195–215 (2007)

  9. 9.

    Criminisi, A., Sharp, T., Blake, A.: Geos: Geodesic image segmentation. In: ECCV’08 Proceedings of the 10th European Conference on Computer Vision: Part I. Springer, Marseille (2008)

  10. 10.

    Duchenne, O., Audibert, J., Keriven, R., Ponce, J., Ségonne, F.: Segmentation by transduction. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE, New York (2008)

  11. 11.

    Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. 27(3), 67 (2008)

  12. 12.

    Fattal, R., Agrawala, M., Rusinkiewicz, S.: Multiscale shape and detail enhancement from multi-light image collections. ACM Trans. Graph. 26(3), 51 (2007)

  13. 13.

    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

  14. 14.

    Lefohn, A., Kniss, J., Hansen, C., Whitaker, R.: Interactive deformation and visualization of level set surfaces using graphics hardware. In: IEEE Visualization 2003, p. 11. IEEE Comput. Soc., Los Alamitos (2003)

  15. 15.

    Li, C., Xu, C., Gui, C., Fox, M.: Level set evolution without re-initialization: A new variational formulation. In: CVPR, pp. 1063–6919 (2005)

  16. 16.

    Li, Y., Sun, J., Tang, C., Shum, H.: Lazy snapping. ACM Trans. Graph. (TOG) 23(3), 303–308 (2004)

  17. 17.

    Liao, B., Xiao, C., Liu, M., Dong, Z., Peng, Q.: Fast hierarchical animated object decomposition using approximately invariant signature. The Visual Computer, pp. 1–13 (2011)

  18. 18.

    Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Berlin (2003)

  19. 19.

    Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

  20. 20.

    Paragios, N., Deriche, R.: Geodesic active regions for supervised texture segmentation. In: ICCV, p. 688. IEEE Comput. Soc., Los Alamitos (1999)

  21. 21.

    Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A PDE-based fast local level set method* 1. J. Comput. Phys. 155(2), 410–438 (1999)

  22. 22.

    Pock, T., Chambolle, A., Cremers, D., Bischof, H.: A convex relaxation approach for computing minimal partitions (2009)

  23. 23.

    Qu, Y., Wong, T., Heng, P.: Manga colorization. ACM Trans. Graph. (TOG) 25(3), 1214–1220 (2006)

  24. 24.

    Rother, C., Kolmogorov, V., Blake, A.: Grabcut: Interactive foreground extraction using iterated graph cuts. In: ACM Transactions on Graphics (TOG), vol. 23, pp. 309–314. ACM, New York (2004)

  25. 25.

    Santner, J., Pock, T., Bischof, H.: Interactive multi-label segmentation. In: ACCV, pp. 397–410 (2011)

  26. 26.

    Sethian, J.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, Cambridge (2000)

  27. 27.

    Shi, Y., Karl, W.: Real-Time Tracking Using Level Sets. In: CVPR, pp. 34–41 (2005)

  28. 28.

    Sussman, M., Fatemi, E.: An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow. SIAM J. Sci. Comput. 20(4), 1165–1191 (1999)

  29. 29.

    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: ICCV, pp. 839–846. IEEE, New York (1998)

  30. 30.

    Unger, M., Pock, T., Trobin, W., Cremers, D., Bischof, H.: Tvseg-interactive total variation based image segmentation. In: BMVC, Leeds, UK (2008)

  31. 31.

    Vemuri, B., Chen, Y.: Joint image registration and segmentation. Geometric level set methods in imaging, vision, and graphics, pp. 251–269 (2003)

  32. 32.

    Xia, T., Wu, Q., Chen, C., Yu, Y.: Lazy texture selection based on active learning. Vis. Comput. 26(3), 157–169 (2010)

  33. 33.

    Xiao, C., Gan, J., Hu, X.: Fast level set image segmentation using new evolution indicator operators. In: Pacific Graphics (2011), short paper. Wiley Online Library

Download references

Acknowledgements

This work was partly supported by the National Basic Research Program of China (No. 2012CB725303), NSFC (No. 60803081, No. 61070081), Open Project Program of the State Key Laboratory for Novel Software Technology (kfkt2010B05), the Open Project Program of the State Key Lab of CAD&CG (Grant No. A1208), and Luojia Outstanding Young Scholar Program of Wuhan University.

Author information

Correspondence to Chunxia Xiao.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

(AVI 371 kB)

(AVI 371 kB)

(AVI 252 kB)

(AVI 327 kB)

(AVI 371 kB)

(AVI 371 kB)

(AVI 252 kB)

(AVI 327 kB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xiao, C., Gan, J. & Hu, X. Fast level set image and video segmentation using new evolution indicator operators. Vis Comput 29, 27–39 (2013) doi:10.1007/s00371-012-0672-5

Download citation

Keywords

  • Level set
  • Segmentation
  • Gaussian mixture models
  • Filtering
  • Tracking