An MLS-based cartoon deformation

  • 191 Accesses

  • 3 Citations


We present an image deformation method driven by skeleton; it is based on MLS deformation algorithm (Schaefer et al. in SIGGRAPH, vol. 25, pp. 533–540, 2006). We improve the MLS deformation by defining a new weight function based on skeleton. Being different from the weight function based on control points, our weight function has benefited from the shape information of undeformed object and keeps deformation local, therefore our method can achieve a realistic effect. In cartoon video, we propose a new method to track the skeleton in the video, to build new origin skeleton and new target skeleton on each frame, and to apply our image deformation method to each frame and maintain spatiotemporal consistency. Results demonstrate that our method is able to decrease the effect of squeeze and use less control points.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.


  1. 1.

    Bookstein, F.L.: Principal warps: Thin-plate splines and the decomposition of deformations. PAMI 22, 567–585 (1989)

  2. 2.

    Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. ECCV 12(1), 25–36 (2004)

  3. 3.

    Chen, T., Cheng, M.-M., Tan, P., Shamir, A., Hu, S.-M.: Sketch2photo: Internet image montage. ACM Trans. Graph. (to appear)

  4. 4.

    Cuno, A., Esperanca, C., Oliveira, A., Cavalcanti, P.R.: 3D as-rigid-as-possible deformations using MLS (2008)

  5. 5.

    Igarashi, T., Moscovich, T., Hughes, J.: As-rigid-as-possible shape manipulation. In: SIGGRAPH, vol. 24, pp. 1134–1141 (2005)

  6. 6.

    Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic coordinates for character articulation. ACM Trans. Graph. 26(3), 71 (2007)

  7. 7.

    Xiao, J., Cheng, H., Sawhney, H., Rao, C., Isnardi, M.: Bilateral filtering-based optical flow estimation with occlusion detection. ECCV 9(4), 211–224 (2006)

  8. 8.

    Lee, S.Y., Chwa, K.Y., Shin, S.Y.: Image metamorphosis using snakes and free-form deformations. Comput. Graph. (Ann. Conf. Ser.) 29, 439–448 (1995)

  9. 9.

    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

  10. 10.

    Mohr, A., Tokheim, L., Gleicher, M.: Direct manipulation of interactive character skins. In: Proceedings of the 2003 symposium on Interactive 3D Graphics, pp. 27–30. ACM, New York (2003)

  11. 11.

    Price, B., Barrett, W.: Object-based vectorization for interactive image editing. Vis. Comput. 22(9), 661–670 (2006)

  12. 12.

    Sand, P.: Particle video: Long-range motion estimation using point trajectories. In: CVPR, vol. 24, pp. 2195–2202 (2006)

  13. 13.

    Rustamov, R., Lipman, Y., Funkhouser, T.: Interior distance using barycentric coordinates. In: Computer Graphics Forum (Symposium on Geometry Processing), 28(5), July 2009

  14. 14.

    Schaefer, S., Mcphail, T., Warren, J.D.: Image deformation using moving least squares. In: SIGGRAPH, vol. 25, pp. 533–540 (2006)

  15. 15.

    Schiwietz, T., Georgii, J., Westermann, R.: Free-form image, pp. 27–36 (2007)

  16. 16.

    Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. In: SIGGRAPH ’86: Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, pp. 151–160. ACM, New York (1986)

  17. 17.

    Weng, Y.-L., Shi, X.-H., Bao, H.-J.: Sketching mls image deformation on the GPU. Comput. Graph. Forum 27(7), 1789–1796 (2008)

  18. 18.

    Weng, Y., Xu, W., Wu, Y., Zhou, K., Guo, B.: 2D shape deformation using nonlinear least squares optimization. Vis. Comput. 22(9), 653–660 (2006)

  19. 19.

    Xu, K., Li, Y., Ju, T., Hu, S.-M., Liu, T.-Q.: Efficient affinity-based edit propagation using k-d tree. ACM Trans. Graph. (to appear)

  20. 20.

    Yan, H.-B., Hu, S., Martin, R.R., Yang, Y.-L.: Shape deformation using a skeleton to drive simplex transformations. IEEE Trans. Vis. Comput. Graph. 14(3), 693–706 (2008)

  21. 21.

    Zhang, G.-X., Cheng, M.-M., Hu, S.-M., Liu, R.R.M.: A shape-preserving approach to image resizing. Comput. Graph. Forum 28, 2009 (1897–1906)

  22. 22.

    Zhang, S.-H., Chen, T., Zhang, Y.-F., Hu, S.-M.: Vectorizing cartoon animations. TVCG 99(2), 1077–2626 (2009)

Download references

Author information

Correspondence to Yang Shen.

Electronic Supplementary Material

Below is the link to the electronic supplementary material. (MPG 17.3 MB)

Below is the link to the electronic supplementary material. (MPG 17.3 MB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shen, Y., Ma, L. & Liu, H. An MLS-based cartoon deformation. Vis Comput 26, 1229–1239 (2010) doi:10.1007/s00371-009-0404-7

Download citation

  • Deformation
  • MLS
  • Cartoon