Advertisement

The Visual Computer

, Volume 25, Issue 5–7, pp 713–718 | Cite as

Interchangeable SPH and level set method in multiphase fluids

  • Ho-Young Lee
  • Jeong-Mo Hong
  • Chang-Hun KimEmail author
Original Article

Abstract

Subgrid-scale fluid is difficult to represent realistically in a grid-based fluid simulation. We show how to describe such small-scale details effectively, even on a coarse grid, by using escaped particles. The simulation of these particles with SPH (smooth particle hydrodynamics) allows the illustration of dynamic and realistic animation of fluids. Particles modeled by SPH have a force which leads them to merge if they are within a certain range. This reduces the accuracy of a simulation. Consequently, aggregated particles which form volumes large enough to be described by the level set method will be simulated inefficiently by particles. We address this problem with a new method in which details too small for the grid are represented by particles, while the level set method with a grid is used to describe merged particles on the grid.

Keywords

Fluid simulation Physically based modeling Bubbles SPH Level set Grid-based simulation Multiphase fluids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

Below is the link to the electronic supplementary material

References

  1. 1.
    Adams, B., Pauly, M., Keiser, R., Guibas, L.J.: Adaptively sampled particle fluids. ACM Trans. Graph. (SIGGRAPH Proc.) 26(3), 481–487 (2007) Google Scholar
  2. 2.
    Becker, M., Teschner, M.: Weakly compressible SPH for free surface flows. In: Proc. of 2007 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., pp. 1–8 (2007) Google Scholar
  3. 3.
    Chorin, A.J.: A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2, 12–16 (1967) zbMATHCrossRefGoogle Scholar
  4. 4.
    Cleary, P.W., Pyo, S.H., Prakash, M., Koo, B.K.: Bubbling and frothing liquids. ACM Trans. Graph. (SIGGRAPH Proc.) 26(3), 971–976 (2007) Google Scholar
  5. 5.
    Desbrun, M., Cani, M.-P.: Smoothed particles: a new paradigm for animating highly deformable bodies. In: 6th Eurographics Workshop on Computer Animation and Simulation, pp. 61–76 (1996) Google Scholar
  6. 6.
    Enright, D., Marschner, S., Fedkiw, R.: Animation and rendering of complex water surfaces. ACM Trans. Graph. (SIGGRAPH Proc.) 21(3), 736–744 (2002) Google Scholar
  7. 7.
    Foster, N., Fedkiw, R.: Practical animation of liquids. In: Proc. of ACM SIGGRAPH 2001, pp. 23–30 (2001) Google Scholar
  8. 8.
    Foster, N., Metaxas, D.: Realistic animation of liquids. Graph. Models Image Process. 58, 471–483 (1996) CrossRefGoogle Scholar
  9. 9.
    Greenwood, S.T., House, D.H.: Better with bubbles: Enhancing the visual realism of simulated fluid. In: Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., pp. 287–296 (2004) Google Scholar
  10. 10.
    Hong, J.-M., Kim, C.-H.: Animation of bubbles in liquid. Comput. Graph. Forum (Eurograph. Proc.) 22(3), 253–262 (2003) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Hong, J.-M., Kim, C.-H.: Discontinuous fluids. ACM Trans. Graph. (SIGGRAPH Proc.) 24(3), 915–920 (2005) CrossRefMathSciNetGoogle Scholar
  12. 12.
    Hong, J.-M., Lee, H.-Y., Yoon, J.-C., Kim, C.-H.: Bubbles alive. ACM Trans. Graph. (SIGGRAPH Proc.) 48, 1–4 (2008) CrossRefGoogle Scholar
  13. 13.
    Kim, J., Cha, D., Chang, B., Koo, B., Ihm, I.: Practical animation of turbulent splashing water. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., pp. 335–344 (2006) Google Scholar
  14. 14.
    Kim, B., Liu, Y., Llamas, I., Rossignac, J.: Flowfixer: Using bfecc for fluid simulation. In: Eurographics Workshop on Natural Phenomena 1, p. 2 (2005) Google Scholar
  15. 15.
    Losasso, F., Gibou, F., Fedkiw, R.: Simulating water and smoke with an octree data structure. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 457–462 (2004) CrossRefGoogle Scholar
  16. 16.
    Losasso, F., Talton, J., Kwatra, N., Fedkiw, R.: Two-way coupled SPH and particle level set fluid simulation. IEEE Trans. Vis. Comput. Graph. 14(4), 797–804 (2008) CrossRefGoogle Scholar
  17. 17.
    Müller, M.:, Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: Proceedings of 2003 ACM SIGGRAPH Symposium on Computer Animation, pp. 154–159 (2003) Google Scholar
  18. 18.
    Magnaudet, J., Eames, I.: The motion of high Reynolds number bubbles in inhomogeneous flow. Annu. Rev. Fluid Mech. 32, 659–708 (2000) CrossRefMathSciNetGoogle Scholar
  19. 19.
    Müller, M., Solenthaler, B., Keiser, R., Gross, M.: Particle-based fluid-fluid interaction. In: Proc. of the 2005 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., pp. 237–244 (2005) Google Scholar
  20. 20.
    Stam, J.: Stable fluids. In: In Proc. of ACM SIGGRAPH 1999, pp. 121–128 (1999) Google Scholar
  21. 21.
    Song, O., Shin, H., Ko, H.-S.: Stable but nondissipative water. ACM Trans. Graph. 24(1), 81–97 (2005) CrossRefGoogle Scholar
  22. 22.
    Takahashi, T., Fujii, H., Kunimatsu, A., Hiwada, K., Saito, T., Tanaka, K., Ueki, H.: Realistic animation of fluid with splash and foam. In: EUROGRAPHICS, vol. 22 (2003) Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Dept. of Computer ScienceKorea Univ.SeoulKorea
  2. 2.Dept. of Computer ScienceDongguk Univ.SeoulKorea

Personalised recommendations