Advertisement

Mesh massage

A versatile mesh optimization framework

Abstract

We present a general framework for post-processing and optimizing surface meshes with respect to various target criteria. On the one hand, the framework allows us to control the shapes of the mesh triangles by applying simple averaging operations; on the other hand we can control the Hausdorff distance to some reference geometry by minimizing a quadratic energy. Due to the simplicity of this setup, the framework is efficient and easy to implement, yet it also constitutes an effective and versatile tool with a variety of possible applications. In particular, we use it to reduce the texture distortion in animated mesh sequences, to improve the results of cross-parameterizations, and to minimize the distance between meshes and their remeshes.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    Alliez, P., Attene, M., Gotsman, C., Ucelli, G.: Recent advances in remeshing of surfaces. In: De Floriani, L., Spagnuolo, M. (eds.) Shape Analysis and Structuring, pp. 53–82. Springer, Berlin Heidelberg New York (2008)

  2. 2.

    Anuar, N., Guskov, I.: Extracting animated meshes with adaptive motion estimation. In: Proceedings of Vision, Modeling, and Visualization 2004, pp. 63–71. IOS Press, Stanford, CA (2004)

  3. 3.

    Charpiat, G., Maurel, P., Pons, J.P., Keriven, R., Faugeras, O.: Generalized gradients: Priors on minimization flows. Int. J. Comput. Vision 73(3), 325–344 (2007)

  4. 4.

    Cignoni, P., Rocchini, C., Scopigno, R.: Metro: Measuring error on simplified surfaces. Comput. Graph. Forum 17(2), 167–174 (1998)

  5. 5.

    Desbrun, M., Meyer, M., Schröder, P., Barr, A.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proceedings of SIGGRAPH ’99, pp. 317–324. ACM Press, Los Angeles, CA (1999)

  6. 6.

    Dyn, N., Hormann, K., Kim, S.J., Levin, D.: Optimizing 3D triangulations using discrete curvature analysis. In: Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods for Curves and Surfaces: Oslo 2000, pp. 135–146. Vanderbilt University Press, Nashville (2001)

  7. 7.

    Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., Stuetzle, W.: Multiresolution analysis of arbitrary meshes. In: Proceedings of SIGGRAPH ’95, pp. 173–182. ACM Press, Los Angeles, CA (1995)

  8. 8.

    Fleishman, S., Drori, I., Cohen-Or, D.: Bilateral mesh denoising. ACM Trans. Graph. 22(3), 950–953 (2003)

  9. 9.

    Floater, M.S.: Mean value coordinates. Comput. Aided Geom. Des. 20(1), 19–27 (2003)

  10. 10.

    Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In: Dodgson, N.A., Floater, M.S., Sabin, M.A. (eds.) Advances in Multiresolution for Geometric Modelling, pp. 157–186. Springer, Berlin Heidelberg New York (2005)

  11. 11.

    Garland, M.: Multiresolution modeling: Survey & future opportunities. In: Proceedings of Eurographics, STAR – State of The Art Reports, pp. 111–131. Eurographics Association, Milano (1999)

  12. 12.

    Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh optimization. In: Proceedings of SIGGRAPH ’93, pp. 19–26. ACM Press, Anaheim, CA (1993)

  13. 13.

    Jones, T.R., Durand, F., Desbrun, M.: Non-iterative, feature-preserving mesh smoothing. ACM Trans. Graph. 22(3), 943–949 (2003)

  14. 14.

    Kraevoy, V., Sheffer, A.: Cross-parameterization and compatible remeshing of 3D models. ACM Trans. Graph. 23(3), 861–869 (2004)

  15. 15.

    Lawson, C.L.: Contributions to the theory of linear least maximum approximation. Ph.D. thesis, University of California, Los Angeles (1961)

  16. 16.

    Liu, L., Tai, C.L., Ji, Z., Wang, G.: Non-iterative approach for global mesh optimization. Comput. Aided Des. 39(9), 772–782 (2007)

  17. 17.

    Meyer, M., Lee, H., Barr, A., Desbrun, M.: Generalized barycentric coordinates for irregular polygons. J. Graph. Tools 7(1), 13–22 (2002)

  18. 18.

    Motzkin, T.S., Walsh, J.L.: Polynomials of best approximation on a real finite point set. Trans. Am. Math. Soc. 91(2), 231–245 (1959)

  19. 19.

    Nealen, A., Igarashi, T., Sorkine, O., Alexa, M.: Laplacian mesh optimization. In: Proceedings of GRAPHITE 2006, pp. 381–389. ACM Press, Kuala Lumpur (2006)

  20. 20.

    Ohtake, Y., Belyaev, A.: Mesh optimization for polygonized isosurfaces. Comput. Graph. Forum 20(3), 368–376 (2001)

  21. 21.

    Owen, S.J., White, D.R., Tautges, T.J.: Facet-based surfaces for 3D mesh generation. In: Proceedings of the 11th International Meshing Roundtable, pp. 297–312. Ithaca, NY (2002)

  22. 22.

    Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2(1), 15–36 (1993)

  23. 23.

    Pottmann, H., Huang, Q.X., Yang, Y.L., Hu, S.M.: Geometry and convergence analysis of algorithms for registration of 3D shapes. Int. J. Comput. Vis. 67(3), 277–296 (2006)

  24. 24.

    Schreiner, J., Asirvatham, A., Praun, E., Hoppe, H.: Inter-surface mapping. ACM Trans. Graph. 23(3), 870–877 (2004)

  25. 25.

    Sumner, R.W., Popović, J.: Deformation transfer for triangle meshes. ACM Trans. Graph. 23(3), 399–405 (2004)

  26. 26.

    Surazhsky, V., Alliez, P., Gotsman, C.: Isotropic remeshing of surfaces: a local parameterization approach. In: Proceedings of the 12th International Meshing Roundtable, pp. 215–224. Santa Fe, NM (2003)

  27. 27.

    Surazhsky, V., Gotsman, C.: Explicit surface remeshing. In: Proceedings of SGP 2003, pp. 20–30. Eurographics Association, Aachen (2003)

  28. 28.

    Taubin, G.: A signal approach to fair surface design. In: Proceedings of SIGGRAPH ’95, pp. 351–358. ACM Press, Los Angeles, CA (1995)

  29. 29.

    Toledo, S.: TAUCS: A library of sparse linear solvers, version 2.2. http://www.tau.ac.il/∼stoledo/taucs/ (2003). Accessed 2008

  30. 30.

    Van Damme, R., Alboul, L.: Tight triangulations. In: Daehlen, M., Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods for Curves and Surfaces, pp. 517–526. Vanderbilt University Press, Nashville (1995)

  31. 31.

    Wachspress, E.L.: A Rational Finite Element Basis. Academic, New York (1975)

Download references

Author information

Correspondence to Kai Hormann.

Electronic Supplementary Material

Movie 1 2.9MB

Movie 2 4.5MB

Movie 3 2.5MB

Movie 4 4.5MB

Movie 5 1.9MB

Movie 6 4.4MB

Movie 7 1.3MB

Movie 8 4.1MB

Movie 1 2.9MB

Movie 2 4.5MB

Movie 3 2.5MB

Movie 4 4.5MB

Movie 5 1.9MB

Movie 6 4.4MB

Movie 7 1.3MB

Movie 8 4.1MB

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Winkler, T., Hormann, K. & Gotsman, C. Mesh massage. Visual Comput 24, 775–785 (2008) doi:10.1007/s00371-008-0259-3

Download citation

Keywords

  • Mesh optimization
  • Laplacian smoothing
  • Hausdorff distance
  • Parameterization
  • Remeshing