Advertisement

Submerged Pleistocene spodic horizon remnant exposed on the inner continental shelf off Guanabara Bay (Rio de Janeiro, Brazil)

  • Rafael Cuellar de Oliveira e SilvaEmail author
  • Gilberto Tavares de Macedo Dias
Original
  • 23 Downloads

Abstract

A deposit dated from 40 cal ka bp is interpreted as a remnant of a spodic B horizon exposed on the seabed adjacent to Guanabara Bay at an average depth of 22 m. Bathymetric data, side scan sonar imagery, and underwater images were used to map the expressive feature, never informed before. It is a semi-consolidated muddy-sand deposit with an escarpment up to 4 m and 2.5 km in length (E-W) and 1.5 km in width (N-S). Grain size and geochemical analyses were carried out, and the hypothesis of being formed by podzolization was confirmed. The paleo sea level at the time of the pedogenesis was estimated to be above the maximum height of the global eustatic curves related to Marine Isotopic Stage 3. The feature exhibits a quartzose-sand constitution, defined as an erosion surface exposed at ca. 12 ka bp. The coastal retrogradation of upper unconsolidated sediment during the last transgression contributed to the settlement of a sandbank at the bay mouth.

Notes

Acknowledgments

The authors are thankful to Otto Sobral for sampling and recording the subaquatic images and to Dr. Bruno Turcq, who provided the radiocarbon measurement at LMC14, France. Deep appreciation is given to the reviewers for their contributions.

Funding information

This study was financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

References

  1. Amador E (2012) Bacia da Baía de Guanabara: Características Geoambientais, Formação e Ecossistemas. Interciência, Rio de JaneiroGoogle Scholar
  2. Alves E, Macario K, Souza R et al (2015) Radiocarbon reservoir corrections on the Brazilian coast from pre-bomb marine shells. Quat Geochronol 29:30–35.  https://doi.org/10.1016/j.quageo.2015.05.006 CrossRefGoogle Scholar
  3. Blott S, Pye K (2001) Gradistat: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf Process Landf 26:1237–1248CrossRefGoogle Scholar
  4. Blott S, Pye K (2008) Particle shape: a review and new methods of characterization and classification. Sedimentology 55:31–63Google Scholar
  5. Bronk Ramsey C (2017) Methods for summarizing radiocarbon datasets. Radiocarbon 59(2):1809–1833CrossRefGoogle Scholar
  6. Buurman P, Vidal-Torrado P, Martins VM (2013) The Podzol hydrosequence of Itaguaré (São Paulo, Brazil). 1. Geomorphology and interpretation of profile morphology. Soil Sci Soc Am J 77:1294–1306.  https://doi.org/10.2136/sssaj2012.0080 CrossRefGoogle Scholar
  7. Cawthra HC, Jacobs Z, Compton JS et al (2018) Depositional and sea-level history from MIS 6 (Termination II) to MIS 3 on the southern continental shelf of South Africa. Quat Sci Rev 181:156–172.  https://doi.org/10.1016/j.quascirev.2017.12.002 CrossRefGoogle Scholar
  8. Clarke ML, Rendell HM, Wintle AG (1999) Quality assurance in luminescence dating. Geomorphology 29:173–185CrossRefGoogle Scholar
  9. Coelho MR, Vidal-Torrado P, Pérez XLO et al (2010) Química e gênese de solos desenvolvidos sob vegetação de restinga no estado de São Paulo. R Bras Ci Solo 34:1951–1964CrossRefGoogle Scholar
  10. Cooper M, Boschi RS, Silva LFS et al (2017) Hydro-physical characterization of soils under the restinga forest. Sci Agric 74(5):393–400.  https://doi.org/10.1590/1678-992x-2016-0103 CrossRefGoogle Scholar
  11. Dadalto TP (2017) Arquitetura estratigráfica e evolução geológica da Restinga da Marambaia (RJ). Thesis, Universidade Federal FluminenseGoogle Scholar
  12. Dias GTM, Quaresma VS (1996) Baía de Guanabara – Evolução Geomorfológica do Fundo Submarino. Anais do XXXIX Congresso Brasileiro de Geologia. 514-517Google Scholar
  13. Dillenburg SR, Barboza EG, Rosa MLCC, Caron F, Cancelli R, Santos-Fischer CB, Lopes RP, Nascimento Ritter M (2019) Sedimentary records of Marine Isotopic Stage 3 (MIS 3) in southern Brazil. Geo-Mar Lett.  https://doi.org/10.1007/s00367-019-00574-2
  14. Doğan U, Koçyiğit A, Varol B et al (2012) MIS 5a and MIS 3 relatively high sea-level stands on the Hatay–Samandağ Coast, Eastern Mediterranean, Turkey. Quatern Int 262:65–79.  https://doi.org/10.1016/j.quaint.2011.12.020 CrossRefGoogle Scholar
  15. Figueiredo AG Jr, de Toledo MB, Cordeiro RC et al (2014) Linked variations in sediment accumulation rates and sea-level in Guanabara Bay, Brazil, over the last 6000 years. Palaeogeogr Palaeoclimatol Palaeoecol 415:83–90.  https://doi.org/10.1016/j.palaeo.2014.08.027 CrossRefGoogle Scholar
  16. Folk RL, Ward WC (1957) Brazos River bar: a study in the significance of grain size parameters. J Sediment Petrol 27:3–26CrossRefGoogle Scholar
  17. Gross MG (1971) Carbon determination. In: Carver RE (ed) Procedures in sedimentary petrology. Wiley-Interscience, New York, pp 573–596Google Scholar
  18. Hanebuth TJJ, Saito Y, Tanabe S et al (2006) Sea levels during late marine isotope stage 3 (or older?) reported from the Red River delta (northern Vietnam) and adjacent regions. Quatern Int 145:119–134.  https://doi.org/10.1016/j.quaint.2005.07.008 CrossRefGoogle Scholar
  19. Ireland S (1987) The Holocene sedimentary history of the coastal lagoons of Rio de Janeiro state, Brazil. In: Tooley MJ, Shennan I (eds) Sea-level changes. The Institute of British Geographers. Special Publications Series 20: 25-66Google Scholar
  20. Kjerfve B, Ribeiro CHA, Dias GTM et al (1997) Oceanographic characteristics of an impacted coastal bay: Baía de Guanabara, Rio de Janeiro, Brazil. Cont Shelf Res 17(13):1609–1643CrossRefGoogle Scholar
  21. Krumbein WC (1941) Measurement and geological significance of shape and roundness of sedimentary particles. J Sediment Petrol 11:64–72CrossRefGoogle Scholar
  22. Lamb AL, Wilson GP, Leng MJ (2006) A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth-Sci Rev 75:29–57CrossRefGoogle Scholar
  23. Mahiques MM, Sousa SHM, Burone L, Nagai RH, Silveira IC, Figueira RC, Soutelino RG, Ponsoni L, Klein DA (2011) Radiocarbon geochronology of the sediments of the São Paulo Bight (southern Brazilian upper margin). An Acad Bras Cienc 83(3):817–834.  https://doi.org/10.1590/S0001-37652011005000028 CrossRefGoogle Scholar
  24. Martinez P, Buurman P, Lopes-Mazzetto JM et al (2018) Geomorphological control on podzolisation – an example from a tropical barrier island. Geomorphology 309:86–97.  https://doi.org/10.1016/j.geomorph.2018.02.030 CrossRefGoogle Scholar
  25. Menezes AR (2017) Critérios taxonômicos para horizonte B espódico do Sistema Brasileiro de Classificação de Solos: revisão e ampliação da nomenclatura e das definições. Dissertation, Universidade Federal Rural do Rio de JaneiroGoogle Scholar
  26. Meyers PA (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem 34:261–289CrossRefGoogle Scholar
  27. Meyers PA, Ishiwatari R (1993) Lacustrine organic geochemistry – an overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem 20:867–900CrossRefGoogle Scholar
  28. Muehe D, Corrêa CHT (1988) Os “arenitos de restinga” do cordão litorâneo da Maçambaba/Lagoa de Araruama – RJ. Anais do XXXV Congresso Brasileiro de Geologia, Belém, Pará v2:553-558Google Scholar
  29. Murray AS, Wintle AG (2000) Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat Meas 32(1):57–73CrossRefGoogle Scholar
  30. Pico T, Creveling JR, Mitrovica JX (2017) Sea-level records from the U.S. mid-Atlantic constrain Laurentide Ice Sheet extent during Marine Isotope Stage 3. Nat Commun 8:1–6.  https://doi.org/10.1038/ncomms15612 CrossRefGoogle Scholar
  31. Rabineau M, Berné S, Olivet JL et al (2006) Paleo sea levels reconsidered from direct observation of paleoshoreline position during Glacial Maxima (for the last 500,000 yr). Earth Planet Sci Lett 252:119–137.  https://doi.org/10.1016/j.epsl.2006.09.033 CrossRefGoogle Scholar
  32. Reimer PJ, Bard E, Bayliss A et al (2013) IntCal13 and MARINE13 radiocarbon age calibration curves 0-50,000 years cal AP. Radiocarbon 55(4):1869–1887.  https://doi.org/10.2458/azu_js_rc.55.16947 CrossRefGoogle Scholar
  33. Rodriguez AB, Anderson JB, Banfield LA et al (2000) Identification of a −15 m Wisconsin shoreline on the Texas inner continental shelf. Palaeogeogr Palaeoclimatol Palaeoecol 158(1-2):25–43.  https://doi.org/10.1016/S0031-0182(00)00027-4 CrossRefGoogle Scholar
  34. Rossetti DF, Polizel SP, Cohen MCL et al (2015) Late Pleistocene–Holocene evolution of the Doce River delta, southeastern Brazil: implications for the understanding of wave-influenced deltas. Mar Geol 367:171–190.  https://doi.org/10.1016/j.margeo.2015.05.012 CrossRefGoogle Scholar
  35. Saito Y, Nishimura A, Matsumoto E (1989) Transgressive sand sheet covering the shelf and upper slope of Sendai, Northeast Japan. Mar Geol 89(3-4):245–258.  https://doi.org/10.1016/0025-3227(89)90078-9 CrossRefGoogle Scholar
  36. Salvador MV, Silva MA (2002) Morphology and sedimentology of the Itaipu Embayment – Niterói/RJ. An Acad Bras Cienc 74(1):127–134CrossRefGoogle Scholar
  37. Salvaterra AS, Santos RF, Salaroli AB et al (2017) Evidence of a Marine Isotope Stage 3 transgression at the Baixada Santista, south-eastern Brazilian coast. Braz J Geol 47(4):693–702.  https://doi.org/10.1590/2317-4889201720170057 CrossRefGoogle Scholar
  38. Santos HG, Jacomine PKT, Anjos LHC et al. (2018) Sistema Brasileiro de Classificação de Solos. Embrapa, BrasíliaGoogle Scholar
  39. Sauer D, Sponagel H, Sommer M et al (2007) Review article – Podzol: soil of the year 2007 – a review on its genesis, occurrence, and functions. J Plant Nutr Soil Sci 170:581–597CrossRefGoogle Scholar
  40. Schoeneberger PJ, Wysocki DA, Benham EC et al (2012) Field book for describing and sampling soils, version 3.0. United States Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center, LincolnGoogle Scholar
  41. Schumacher BA (2002) Methods for the determination of total organic carbon (TOC) in soils and sediments. United States Environmental Protection Agency, Ecological Risk Assessment Support Center Office of Research and Development, Las VegasGoogle Scholar
  42. Siddall M, Rohling EJ, Thompson WG et al (2008). Marine isotope stage 3 sea level fluctuations: data synthesis and new outlook. Rev Geophys 46(4). doi: https://doi.org/10.1029/2007RG000226
  43. Silva ALC, Silva MAM, Gambôa LAP et al (2014) Sedimentary architecture and depositional evolution of the Quaternary coastal plain of Maricá, Rio de Janeiro. Brazil Braz J Geol 44(2):191–206.  https://doi.org/10.5327/Z2317-4889201400020002 CrossRefGoogle Scholar
  44. Stein R (1991) Accumulation of organic carbon in marine sediments. Results from the Deep Sea Drilling Project/Ocean Drilling Program. Lecture Notes in Earth Sciences 34. Springer-Verlag, Berlin.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Graduate Program in Ocean and Earth Dynamics (DOT), Department of Geology, LAGEMARUniversidade Federal Fluminense (UFF)NiteróiBrazil

Personalised recommendations