Advertisement

Geodiversity as an indicator to benthic habitat distribution: an integrative approach in a tropical continental shelf

  • D. Lucatelli
  • E. R. Goes
  • C. J. Brown
  • J. F. Souza-Filho
  • E. Guedes-Silva
  • T. C. M. AraújoEmail author
Original
  • 63 Downloads

Abstract

Marine habitat mapping provides essential information for environmental management and design of marine reserves. In tropical regions, particularly along the Brazilian coast, the spatial variability of marine habitats is poorly known. The aim of this study is to evaluate the geodiversity of the region as an indicator to benthic habitat distribution, applying an integrative approach utilizing existing broad-scale bathymetric and seafloor geological data sets. A digital bathymetric model (DBM) of the Pernambuco Continental shelf (PCS) was generated at 80 m resolution from available bathymetric data. Through the benthic terrain model (BTM), DBM derivatives and the benthic structures were generated. These structures were combined with the textural seabed classification using tools in ArcGIS™ 10.5 Spatial Analyst to identify 22 seabed geomorphic features, including a submarine canyon confirmed around 8°20′S. These geomorphological features describe the surficial characteristics of the seafloor, providing the baseline for subsequent habitat-mapping studies, and can therefore be considered a potential habitat map. Three profiles taken to describe the cross-shelf seafloor environment (North, Center, and South) extracted from interpolated seabed geomorphological map revealed that sediment grain size becomes coarser from inshore to offshore, with predominantly sand and gravel sediment grain sizes. Overall, these results indicated a great potential for PCS due to the geodiversity present in the area, which leads to a higher biodiversity as well. Based on that, the central portion of PCS is suggested as a priority area for conservation because it was the most geomorphologically diverse. These terrain features influence the environmental conditions, such as currents, waves, nutrients, and other oceanographic parameters, which results in high diversity of benthic habitats in the region. This study presents a first step in characterizing the geomorphology of PCS by using reliable, standardized data.

Keywords

Brazilian continental shelf Habitat mapping Seabed geomorphic features Benthic structures Folk class Sedimentology 

Notes

Acknowledgments

The authors would like to thank all the foundations for the financial support (Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES e Fundação do Amparo a Ciência e Tecnologia—FACEPE). This manuscript is a contribution to the Brazilian National Institute of Science and Technology for Tropical Marine Environments—INCT AmbTropic (CNPq/FABESB Grants 565054/2010-4 and 8936/2011). All the authors also thank the referees for the contributions and dedicated time.

References

  1. Almeida NM, Vital H, Gomes MP (2015) Morphology of submarine canyons along the continental margin of the Potiguar Basin, NE Brazil. Mar Petrol Geol 68(2015):307–324.  https://doi.org/10.1016/j.marpetgeo.2015.08.035 CrossRefGoogle Scholar
  2. Amado-Filho GM, Pereira-Filho GH (2012) Rhodolith beds in Brazil: a new potential habitat for marine bioprospection. Revista Brasileira de Farmacognosia 22(4):782–788CrossRefGoogle Scholar
  3. Araújo TCM, Seoane JCS, Coutinho PN (2004) Geomorfologia da Plataforma Continental de Pernambuco. In: Eskinazi-Leça E, Neumann-Leitão S, Costa MF (eds) Oceanografia: Um Cenário Tropical, single edn. Edições Bagaço, Recife, Brasil, pp 39–57Google Scholar
  4. Bargain A, Foglini F, Pairaud I, Bonaldo D, Carniel S, Angeletti L et al (2018) Predictive habitat modeling in two Mediterranean canyons including hydrodynamic variables. Progress in Oceanography 169:151–168.  https://doi.org/10.1016/j.pocean.2018.02.015 CrossRefGoogle Scholar
  5. Bastos AC, Valéria S, Quaresma MBM, Danielle PDA, Silvia NB, Paulo HC et al (2015) Shelf morphology as an indicator of sedimentary regimes: a synthesis from a mixed siliciclastic–carbonate shelf on the eastern Brazilian margin. Journal of South American Earth Sciences 63:125–136.  https://doi.org/10.1016/j.jsames.2015.07.003 CrossRefGoogle Scholar
  6. Bouchet PJ, Meeuwig JJ, Salgado Kent CP, Letessier TB, Jenner CK (2015) Topographic determinants of mobile vertebrate predator hotspots: current knowledge and future directions: landscape models of mobile predator hotspots. Biological Reviews of the Cambridge Philosophical Society 90(3):699–728.  https://doi.org/10.1111/brv.12130 CrossRefGoogle Scholar
  7. Brown CJ, Smith AJ, Lawton P, Anderson JT (2011) Benthic habitat mapping: a review of progress towards improved understanding of the spatial ecology oh the using acoustic techniques. Estuarine, Coastal and Shelf Science 92:502–520.  https://doi.org/10.1016/j.ecss.2011.02.007 CrossRefGoogle Scholar
  8. Camargo JMR, Araújo TCM, Maida M, Ushizima TM (2007) Morfologia da plataforma continental interna adjacente ao município de Tamandaré, sul de Pernambuco. Brasil Rev Bras Geof [online] 25(1):79–89.  https://doi.org/10.1590/S0102-261X2007000500008ISSN 0102-261X CrossRefGoogle Scholar
  9. Camargo JMR, Araújo TCM, Ferreira BP, Maida M (2015) Topographic features related to recent sea level history in a sediment-starved tropical shelf: linking the past, present and future. Regional Studies in Marine Science 2:203–211CrossRefGoogle Scholar
  10. Castro Filho BM de, Miranda LB de (1998) Physical oceanography of the western atlantic continental shelf located between 4 graus N and 34 graus S: Coastal segment (4,W). In: The Sea, vol.11. John Wiley & Sons, Oxford, pp 209–251Google Scholar
  11. Coelho PA, Batista-Leite LMA, Santos LMA, Santos MAC, Torres FA (2004) O manguezal. In: Eskinazi-Leça E, Neumann-Leitão S, Costa MF (eds) Oceanografia: um cenário tropical, Edições Bagaço, Recife, Brasil, V. único, pp 641–688Google Scholar
  12. Coelho PA, Koening ML (1972) A distribuição dos crustáceos pertencentes às ordens Stomatopoda, Tanaidacea e Isopoda no norte e nordeste do Brasil. Trab. Oceanog. Univ. Fed. PE 13:245–259Google Scholar
  13. Coelho PA, Ramos-Porto M, Koening ML (1980) Biogeografia e bionomia dos crustáceos do litoral equatorial brasileiro. Trabs Oceanogrs Univ Fed PE 15:7–138Google Scholar
  14. Coutinho PN (1976) Geologia marinha da plataforma continental Alagoas-Sergipe. T. Livre Docência, UFPE, RecifeGoogle Scholar
  15. Coutinho PN, Moraes JO (1968) Distribution de los sedimentos em la plataforma continental norte–nordeste do Brasil. In: Symposium on investigations and resources of the Caribbean Sea and adjacent regions. UNESCO, Paris, pp 261–284Google Scholar
  16. Dartnell P, Gardner JV (2004) Predicting seafloor facies from multibeam bathymetry and backscatter data. Photogrammetric Engineering and Remote Sensing 70:1081–1091CrossRefGoogle Scholar
  17. Diesing M, Green SL, Stephens D, Lark RM, Stewart HA, Dove D (2014) Mapping seabed sediments: comparison of manual, geostatistical, object-based image analysis and machine learning approaches. Continental Shelf Research 84:107–119 http://www.sciencedirect.com/science/article/pii/S0278434314001629 CrossRefGoogle Scholar
  18. Dominguez JML, Silva RP, Nunes AS, Freire AFM (2013) The narrow, shallow, low-accommodation shelf of central Brazil: sedimentology, evolution, and human uses. Geomorphology 203:46–59.  https://doi.org/10.1016/j.geomorph.2013.07.004 CrossRefGoogle Scholar
  19. Edinger EN, Sherwood OA, Piper DJW et al (2011) Geological features supporting deep-sea coral habitat in Atlantic Canada. Continental Shelf Research 31:S69–S84.  https://doi.org/10.1016/j.csr.2010.07.004 CrossRefGoogle Scholar
  20. Erdey-Heydorn MD (2008) An ArcGIS seabed characterization toolbox developed for investigating benthic habitats. Marine Geodesy 31(4):318–358.  https://doi.org/10.1080/01490410802466819ISSN 0149-0419 CrossRefGoogle Scholar
  21. Folk RL (1954) The distinction between grain size and mineral composition in sedimentary-rock nomenclature. Journal of Geology 62:344–359CrossRefGoogle Scholar
  22. Goes ER, Ferreira AV Jr (2017) Caracterização Morfossedimentar da Plataforma Continental Brasileira. RBGF 10(5):1595–1613.  https://doi.org/10.26848/rbgf.v.10.5.p1595-1613 CrossRefGoogle Scholar
  23. Goes ER, Brown CJ, Araújo TC (2019) Geomorphological classification of the benthic structures on a tropical continental shelf. Frontiers in Marine Science 6:47.  https://doi.org/10.3389/fmars.2019.00047 CrossRefGoogle Scholar
  24. Gray M, Gordon JE, Brown EJ (2013) Geodiversity and the ecosystem approach: the contribution of geoscience in delivering integrated environmental management. Proceedings of the Geologists Association 124(4):659–673CrossRefGoogle Scholar
  25. Greene HG, Bizzarro JJ, O’Connell VM, Brylinsky CK (2007) Construction of digital potential marine benthic habitat maps using a coded classification scheme and its application. Mapp Seafloor Habitat Charact Geol Assoc Can Spec Pap 47:141–155Google Scholar
  26. Harris PT, Baker EK (2012) Why map benthic habitats? In: Harris PT, Baker EK (eds) Seafloor geomorphology as benthic habitat, GeoHAB Atlas of Seafloor Geomorphic Features and Benthic Habitats. Elsevier, London, pp 3–22.  https://doi.org/10.1016/B978-0-12-385140-6.00001-3 CrossRefGoogle Scholar
  27. Harris PT, Macmillan-Lawler M, Rupp J, Baker EK (2014) Geomorphology of the oceans. Marine Geology 352:4–24.  https://doi.org/10.1016/j.margeo.2014.01.011 CrossRefGoogle Scholar
  28. Iampietro PJ, Young MA, Kvitek RG (2008) Multivariate prediction of rockfish habitat suitability in Cordell Bank National Marine Sanctuary and Del Monte Shalebeds, California, USA. Marine Geodesy 31(4):359–371CrossRefGoogle Scholar
  29. Jerosch K, Kuhn G, Krajnik I, Scharf FK, Dorschel B (2015) A geomorphological seabed classification for the Weddell Sea, Antarctica. Marine Geophysical Researches 37:127–141.  https://doi.org/10.1007/s11001-015-9256-x CrossRefGoogle Scholar
  30. Jobe ZR, Lowe DR, Uchytil SJ (2011) Two fundamentally different types of submarine canyons along the continental margin of Equatorial Guinea. Mar Petrol Geol 28(3):43–860CrossRefGoogle Scholar
  31. Kaskela AM, Kotilainen AT, Al-Hamdani Z, Leth JO, Reker J (2012) Seabed geomorphic features in a glaciated shelf of the Baltic Sea. Estuarine, Coastal and Shelf Science 100:150–161CrossRefGoogle Scholar
  32. Kaskela AM, Rousi H, Ronkainen M, Orlova M, Babin A et al (2017) Linkages between benthic assemblages and physical environmental factors: the role of geodiversity in Eastern Gulf of Finland ecosystems. Continental Shelf Research 142:1–13CrossRefGoogle Scholar
  33. Kaskela AM, Kotilainen AT (2017) Seabed geodiversity in a glaciated shelf area, the Baltic Sea. Geomorphology 295:419–435CrossRefGoogle Scholar
  34. Kempf M (1967/69) Nota Preliminar sobre os fundos costeiros da região de Itamaracá (Norte do Estado de Pernambuco, Brasil). Trabs Oceanogrs Uni Fed PE, Recife 9(11):95–110Google Scholar
  35. Kempf M (1970a) Notes on the benthic bionomy of the N–NE Brazilian shelf. Marine Biology 5:213–224.  https://doi.org/10.1007/BF00346909 CrossRefGoogle Scholar
  36. Kempf M (1970b) Notas sobre os fundos costeiros da região de Itamaracá (Norte do Estado de Pernambuco, Brasil). Trabs Oceanogrs Univ Fed PE 9:95–110.  https://doi.org/10.5914/tropocean.v9i1.2521 CrossRefGoogle Scholar
  37. Kempf M, Coutinho PN, Morais JO (1968) A plataforma continental do N-NE do Brasil. Nota preliminar sobre a natureza do fundo. D.H.N. Marinha do Brasil, Rio 26:579–600Google Scholar
  38. Kracker L, Kendall M, Mcfall G (2008) Benthic features as a determinant for fish biomass in Gray’s Reef National Marine Sanctuary. Marine Geodesy 31(4):267–280CrossRefGoogle Scholar
  39. Leão ZMAN, Dominguez JM (2000) Tropical coast of Brazil. Marine Pollution Bulletin 41:112–122CrossRefGoogle Scholar
  40. Lacharité M, Metaxas A (2018) Environmental drivers of epibenthic megafauna on a deep temperate continental shelf: a multiscale approach. Progress in Oceanography 162:171–186.  https://doi.org/10.1016/j.pocean.2018.03.002 CrossRefGoogle Scholar
  41. Lecours V, Brown CJ, Devillers R, Lucieer VL, Edinger EN (2016) Comparing selections of environmental variables for ecological studies: a focus on terrain attributes. PLoS One 11(12)CrossRefGoogle Scholar
  42. Lecours V, Devillers R, Schneider DC, Lucieer VL, Brown CJ, Edinger EN (2015) Spatial scale and geographic context in benthic habitat mapping: review and future directions. Marine Ecology Progress Series 535:259–284.  https://doi.org/10.3354/meps11378 CrossRefGoogle Scholar
  43. Lecours V, Devillers R, Lucieer VL, Brown CJ (2017a) Artefacts in marine digital terrain models: a multiscale analysis of their impact on the derivation of terrain attributes. IEEE T Geosci Remote 55(9):5391–5406CrossRefGoogle Scholar
  44. Lecours V, Devillers R, Simms A, Lucieer VL, Brown CJ (2017b) Towards a framework for terrain attribute selection in environmental studies. Environmental Modelling and Software 89:19–30CrossRefGoogle Scholar
  45. Lundblad E, Wright DJ, Miller J, Larkin EM, Rinehart R, Naar DF, Donahue BT, Anderson SM, Battista T (2006) A benthic terrain classification scheme for American Samoa. Marine Geodesy 29(2):89–111CrossRefGoogle Scholar
  46. Mabesoone JM, Coutinho PN (1970) Littoral and shallow marine geology of northern and northeastern Brazil. Trab Inst Oceanogr Univ Fed PE 13:1–214Google Scholar
  47. Mabesoone JM, Tinoco I (1967) Shelf off Alagoas and Sergipe (Northeastern Brazil). 2. Geology. Trabs Inst Oceanogr Univ Fed Pernambuco 7/8:151–186Google Scholar
  48. Melelli L (2014) Geodiversity: a new quantitative index for natural protected areas enhancement. Geoj Tour Geosites 13(1):2–12Google Scholar
  49. Manso VAV, Corrêa ICS, Guerra NC (2003) Morfologia e Sedimentologia da Plataforma Continental Interna entre as Praias Porto de Galinhas e Campos—Litoral Sul de Pernambuco, Brasil. Rev Pesq Geociências 30(2):17–25CrossRefGoogle Scholar
  50. Martins LR, Urien CM, Eichler BB (1967) Distribuição dos sedimentos modernos da plataforma continental sul-brasileira e uruguaia. Congresso Brasileiro de Geologia, Curitiba, Brasil 1967:29–43Google Scholar
  51. Mohriak WU, Bassetto M, Vieira IS (2000) Tectonic evolution of the rift basins in the northeastern Brazilian region. In: Mohriak W, Talwani M (eds) Atlantic rifts and continental margins, Geophys Monograph, vol 115, pp 293–315CrossRefGoogle Scholar
  52. Moura RL, Secchin NA, Amado-Filho GM, Francini-Filho RB, Freitas MO, Minte-Vera CV, Teixeira JB, Thompson FL, Dutra GF, Sumida PYG, Guth AZ, Lopes RM, Bastos AC (2013) Spatial patterns of benthic megahabitats and conservation planning in the Abrolhos Bank. Continental Shelf Research 70:109–117.  https://doi.org/10.1016/j.csr.2013.04.036 CrossRefGoogle Scholar
  53. Ottmann F (1959) Estudo das amostras do fundo recolhidas pelo “Almirante Saldanha” na região da desembocadura do Rio Amazonas. Trabs Inst biol marít Oceanogr Univ Recife 1:77–106Google Scholar
  54. Pereira MLM, Bonetti Filho J (2018) Caracterização geomorfológica do relevo submarino de áreas marinhas protegidas brasileiras com base em técnicas de análise espacial. R Bras Geogr 19(1):127–147 http://www.lsie.unb.br/rbg/index.php/rbg/article/view/1008 Google Scholar
  55. Post AL (2008) The application of physical surrogates to predict the distribution of marine benthic organisms. Ocean and Coastal Management 51:161–179.  https://doi.org/10.1016/j.ocecoaman.2007.04.008 CrossRefGoogle Scholar
  56. Robinson KA, Ramsay K, Lindenbaum C, Frost N, Moore J, Wright AP, Petrey D (2011) Predicting the distribution of seabed biotopes in the southern Irish Sea. Continental Shelf Research 31(2):S120–S131.  https://doi.org/10.1016/j.csr.2010.01.010 CrossRefGoogle Scholar
  57. Shepard FP (1963) Submarine geology. Harper and Row, New York, p 557Google Scholar
  58. Sibson R (1981) A brief description of natural neighbor interpolation. In: Interpreting multivariate data, pp 21–36Google Scholar
  59. Summerhayes CP, Coutinho PN, França AM, Ellis JP (1975) Continental margin sedimentation of Brazil, 3. Salvador to Fortaleza, northeastern Brazil. Contrib Sedimentol 4:44–77Google Scholar
  60. Tong R, Purser A, Unnithan V, Guinan J, Unnithan V, Yu J, Zhang C (2016) Quantifying relationships between abundances of cold-water coral Lophelia pertusa and terrain features: a case study on the Norwegian margin. Continental Shelf Research 116:13–26.  https://doi.org/10.1016/j.csr.2016.01.012 CrossRefGoogle Scholar
  61. UNESCO (2019) “United Nations decade of ocean science for sustainable development (2021-2030)”. 2017. UNESCO. https://en.unesco.org/ocean-decade. Accessed 12 September 2019
  62. Verfaille E, Degraer S, Schelfaut K, Willems W, Lancker VV (2009) A protocol for classifying ecologically relevant marine zones, a statistical approach. Estuar Coast Shelf S 83:175–185.  https://doi.org/10.1016/j.ecss.2009.03.003 CrossRefGoogle Scholar
  63. Vital H (2014) The north and northeast Brazilian tropical shelves. In: Chiocci FL, Chivas AR (eds) Continental shelves of the world: their evolution during the last Glacio-Eustatic cycle, vol 41. Geological Society, London, pp 35–46.  https://doi.org/10.1144/M41.4 CrossRefGoogle Scholar
  64. Vital H, Gomes MP, Tabosa WF, Frazão EP, Santos CLA, Plácido-Júnior JS (2010) Characterization of the Brazilian continental shelf adjacent to Rio Grande do Norte State, NE Brazil. Braz J Oceanogr 58 (special issue, IGCP526): 43–54CrossRefGoogle Scholar
  65. Watson D (1998) The natural neighbor series manuals and source codes. Computers & Geosciences 25(4):463–466.  https://doi.org/10.1016/S0098-3004(98)00150-2 CrossRefGoogle Scholar
  66. Weiss A (2001) Topographic position and landforms analysis. In: Poster presentation, ESRI user conference, San Diego, CAGoogle Scholar
  67. Wienberg C, Wintersteller P, Beuck L, Hebbeln D (2013) Coral patch seamount (NE Atlantic)—a sedimentological and megafaunal reconnaissance based on video and hydroacoustic surveys. Biogeosciences 10(5):3421CrossRefGoogle Scholar
  68. Wright DJ, Lundblad ER, Larkin EM, Rinehart RW, Murphy J, Cary-Kothera L, Draganov K (2005) ArcGIS benthic terrain modeler: a collection of tools used with bathymetric data sets to examine the deepwater benthic environment. Oregon State University, CorvallisGoogle Scholar
  69. Young MA, Iampietro PJP, Kvitek RG, Garza CD (2010) Multivariate bathymetry-derived generalized linear model accurately predicts rockfish distribution on Cordell Bank, California, USA. Marine Mar Ecol Prog Ser 415(415):247–261CrossRefGoogle Scholar
  70. Zembruscki SJ (1967) Sedimentos da plataforma continental do Brasil. XXII Comissão Oceanográfica Noc. Almirante Saldanha. Dir. Hidrogr, Naveg, DG 26–X. Apendice B, Rio de Janeiro, pp 369–409Google Scholar
  71. Zembruscki SJ, Barreto HT, Palma JJC, Milliman JD (1972) Estudo preliminar das províncias geomorfológicas da margem continental brasileira. Congo Bras Geologia, Belém 26(2):187–209Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • D. Lucatelli
    • 1
  • E. R. Goes
    • 2
  • C. J. Brown
    • 3
  • J. F. Souza-Filho
    • 1
  • E. Guedes-Silva
    • 1
  • T. C. M. Araújo
    • 2
    Email author
  1. 1.Laboratory of Carcinology, Museum of Oceanography Prof. Petrônio Alves Coelho—MOUFPEUniversidade Federal de Pernambuco—UFPERecifeBrazil
  2. 2.Laboratory of Geological Oceanography, Department of Oceanography—DOCEANUniversidade Federal de Pernambuco—UFPERecifeBrazil
  3. 3.Department of OceanographyDalhousie UniversityHalifaxCanada

Personalised recommendations