Advertisement

Structural controls on the morphology of an extremely narrow, low-accommodation, passive margin shelf (Eastern Brazil)

  • Marcela Matthews Soares Halla
  • José Maria Landim DominguezEmail author
  • Luiz César Corrêa-Gomes
Original
  • 46 Downloads

Abstract

The continental shelf adjacent to the municipality of Salvador (CSS), state of Bahia, Brazil, is one of the narrowest in the world (8 km) although it is located in a passive margin. This shelf is also shallow, with low accommodation space and sediment input. During the Quaternary, the area was exposed most of the time to subaerial conditions. This long period of erosion, controlled by the structural and lithological framework of the Cretaceous Northern Camamu Sedimentary Basin, was highly influential on shelf physiography. The paleo relief that was generated, in turn, controlled sedimentation during the sea-level rise since the Last Glacial Maximum (LGM). The present study used high-resolution shallow seismic surveys to investigate the influence of the structural framework of the Northern Camamu Sedimentary Basin on the erosion of CSS during lowstands and on sediment accumulation during highstands. Five seismic units were identified, representing the Crystalline Basement, the Northern Camamu Sedimentary Basin, and the Quaternary Sediments. Bathymetric highs and lows on the shelf are associated, respectively, with antiforms and synforms present in the syn-rift strata of the sedimentary basin. Normal and transfer faults related to the installation of the sedimentary basin controlled the incision of valleys during periods of subaerial exposure. This structural framework still presents a morphological expression on the shelf due to an immensely reduced sediment input, which precluded the burial of these structures.

Keywords

Sedimentary basin High-resolution seismic Structural geology Eustatic sea level changes 

Notes

Acknowledgments

This paper is a contribution of the following research grants: inctAmbTropic, CNPq/FAPESB Grants, 565054/2010-4; 8936/2011; and 465634/2014-1. JML Dominguez, MM Halla, and LC Correa-Gomes thank CNPq and CAPES for their research fellowships.

References

  1. Abdul NA, Mortlock RA, Wright JD, Fairbanks RG (2016) Younger Dryas sea level and meltwater pulse 1B recorded in Barbados reef crest coral Acropora palmate. Paleoceanography 31(2):330–344.  https://doi.org/10.1002/2015PA002847 CrossRefGoogle Scholar
  2. Alkmim FF (2004) O que faz de um cráton um cráton? O Cráton do São Francisco e as revelações almeidianas ao delimitá-lo. In: Bartorelli A, Carneiro CDR, Brito Neves BB (ed) Geologia do continente sul-americano: evolução da obra de Fernando Flávio Marques de Almeida. pp 17-34.Google Scholar
  3. Allen PA, Allen JR (2005) Basin analysis: principles and applications. Wiley-Blackwell; 2nd edition, 560p. ISBN: 0632052074Google Scholar
  4. Barbosa JSF, Correa-Gomes LC, Marinho MM, Silva FCA (2003) Geologia do segmento sul do orógeno Itabuna-Salvador-Curaçá. Revista Brasileira de Geociências 33(1-supl):33–48CrossRefGoogle Scholar
  5. Bard E, Hamelin B, Delanghe-Sabatier D (2010) Deglacial meltwater pulse 1B and Younger Dryas sea levels revisited with boreholes at Tahiti. Science 327:1235–1237.  https://doi.org/10.1126/science.1180557 CrossRefGoogle Scholar
  6. Blaich OA, Tsikalas F, Faleide JI (2008) Northeastern Brazilian margin: regional tectonic evolution based on integrated analysis of seismic reflection and potential field data and modelling. Tectonophysics 458(1–4):51–67. doi: /10.1016/j.tecto.2008.02.011CrossRefGoogle Scholar
  7. Blum M, Martin J, Milliken K, Garvin M (2013) Paleovalley systems: insights from Quaternary analogs and experiments. Earth-Sci Rev 116:128–169.  https://doi.org/10.1016/j.earscirev.2012.09.003 CrossRefGoogle Scholar
  8. Caixeta JM, Milhomem SP, Witzke RE, Sérgio I, Dupuy S, Gontijo GA (2007) Bacia de Camamu. Boletim de Geociências da Petrobras 15(2):455–461Google Scholar
  9. Camargo JMR, Araujo TCM, Ferreira BP, Maida M (2015) Topographic features related to recent sea level history in a sediment-starved tropical shelf: Linking past, present and future. Reg Stud Mar Sci 2:203–211.  https://doi.org/10.1016/j.rsma.2015.10.009 CrossRefGoogle Scholar
  10. Catuneanu O (2006) Principles of sequence stratigraphy (developments in sedimentology). Elsevier Science, 386p. ISBN: 978-0444515681Google Scholar
  11. Catuneanu O, Abreu V, Bhattacharya JP et al (2009) Towards the standardization of sequence stratigraphy. Earth-Sci Rev 92:1–33.  https://doi.org/10.1016/j.earscirev.2008.10.003 CrossRefGoogle Scholar
  12. Catuneanu O, Galloway WE, 2, Kendall CGC, Miall AD, Posamentier HW, Strasser A, Tucker ME (2011) Sequence stratigraphy: Methodology and nomenclature. Newsletters on Stratigraphy, Vol. 44/3, 173–245.  https://doi.org/10.1127/0078-0421/2011/0011 CrossRefGoogle Scholar
  13. Cawthra HC, Neumann FH, Uken AM, Smith AM, Guastella LA, Yates A (2012) Sedimentation on the narrow (8 km wide), oceanic current-influenced continental shelf off Durban, Kwazulu-Natal, South Africa. Mar Geol 323:107–122.  https://doi.org/10.1016/j.margeo.2012.08.001 CrossRefGoogle Scholar
  14. Chiocci FL, Chivas AR (2014) Continental shelves of the world: their evolution during the last Glacio-Eustatic cycle. Geol Soc Lond Mem 41:343.  https://doi.org/10.1144/M41.12 CrossRefGoogle Scholar
  15. Corrêa-Gomes LC, Maria J, Dominguez JML et al (2005) Padrões De Orientação Dos Campos De Tensão, Estruturas, Herança Do Embasamento E Evolução Tectônica Das Bacias De Camamú E Porção Sul Do Recôncavo, Costa Do Dendê, Bahia. Revista Brasileira de Geociências 35(4):117–128CrossRefGoogle Scholar
  16. Davison I (1997) Wide and narrow margins of the Brazilian South Atlantic. J Geol Soc 154(3):471–476.  https://doi.org/10.1144/gsjgs.154.3.0471 CrossRefGoogle Scholar
  17. Deschamps P, Durand N, Bard E et al (2012) Icesheet collapse and sea-level rise at the Bølling warming 14,600 years ago. Nature 483(7391):559–564.  https://doi.org/10.1038/nature10902 CrossRefGoogle Scholar
  18. Destro N, Szatmari P, Alkmim FF, Magnavita LP (2003) Release faults, associated structures, and their control on petroleum trends in the Recôncavo rift, northeast Brazil. Am Assoc Pet Geol Bull 87(7):1123–1144.  https://doi.org/10.1306/02200300156 CrossRefGoogle Scholar
  19. Dias JM, Nittrouer CA (1984) Continental shelf sediments of northern Portugal. Cont Shelf Res 3(2):147–165.  https://doi.org/10.1016/0278-4343(84)90004-9 CrossRefGoogle Scholar
  20. Dominguez JML, Bittencourt ACSP (2009) Geologia da Baía de Todos os Santos. In: Hatje V, Andrade JB (eds) Baía de Todos os Santos: Aspectos Oceanográficos. Salvador, EDUFBA, pp 25–66Google Scholar
  21. Dominguez JML, Ramos JMF, Rebouças RC et al (2011) A Plataforma Continental Do Município De Salvador: Geologia, Usos Múltiplos E Recursos Minerais. Série Arquivos Abertos 37, CBPM, Salvador, 72p.Google Scholar
  22. Dominguez JML, Silva RP, Nunes AS et al (2013) The narrow, shallow, low-accommodation shelf of central Brazil: sedimentology, evolution and human uses. Geomorphology 203(1):46–59.  https://doi.org/10.1016/j.geomorph.2013.07.004 CrossRefGoogle Scholar
  23. Ferreira TS, Caixeta JM, Lima FD (2009) Controle do embasamento no rifteamento das bacias de Camamu e Almada. Boletim de Geociências da Petrobras 17:69–88Google Scholar
  24. Fossen H (2010) Structural Geology. Cambridge University Press, Cambridge, 239p. isbn:978-1107057647Google Scholar
  25. Gomes MP, Vital H, Bezerra FHR et al (2014) The interplay between structural inheritance and morphology in the Equatorial Continental Shelf of Brazil. Mar Geol 355:150–161.  https://doi.org/10.1016/j.margeo.2014.06.002 CrossRefGoogle Scholar
  26. Graddi JCSV, Neto OPA, Caixeta JM (2007) Bacia de Jacuípe. Boletim de Geociências da Petrobras. Rio de Janeiro 15(2):417–421Google Scholar
  27. Hanebuth TJJ, Voris HK, Yokoyama Y et al (2011) Formation and fate of sedimentary depocenters on Southeast Asia’s Sunda Shelf over the past sea-level cycle and biogeographic implications. Earth-Sci Rev 104:92–110.  https://doi.org/10.1016/j.earscirev.2010.09.006 CrossRefGoogle Scholar
  28. Kearey P, Klepeis KA, Vine FJ (2008) Global tectonics. Third Ed. Wiley-Blackwell.UK. 496p. ISBN: 978-1405107778.Google Scholar
  29. Lantzsch H, Hanebuth TJJ, Bender VB, Krastel S (2009) Sedimentary architecture of a low-accumulation shelf since the Late Pleistocene (NW Iberia). Mar Geol 259:47–58.  https://doi.org/10.1016/j.margeo.2008.12.008 CrossRefGoogle Scholar
  30. Lobo FJ, Ercilla G, Fernández-Salas LM, Gomez D (2014a) The Iberian Mediterranean shelves. In: Chiocci FL, Chivas AR (eds). Continental shelves of the world: their evolution during the last Glacio-Eustatic cycle. Geol Soc Lond Mem 41:147–170.  https://doi.org/10.1144/M41.11 CrossRefGoogle Scholar
  31. Lobo FJ, Le Roy P, Mendes I, Sahabi M (2014b) The Gulf of Cádiz continental shelves. In: Chiocci FL, Chivas AR (eds). Continental shelves of the world: their evolution during the last Glacio-Eustatic cycle. Geol Soc Lond Mem 41:109–130.  https://doi.org/10.1144/M41.9 CrossRefGoogle Scholar
  32. Martorelli E, Falese F, Chiocci FL (2014) Overview of the variability of late Quaternary continental shelf deposits of the Italian peninsula. In: Chiocci FL, Chivas AR (eds). Continental shelves of the world: their evolution during the last Glacio-Eustatic cycle. Geol Soc Lond Mem 41:171–186.  https://doi.org/10.1144/M41.12 CrossRefGoogle Scholar
  33. Mello ACCE (2016) O Banco De Santo Antônio: Um estudo de sísmica de alta resolução em um delta de maré vazante localizado na entrada de uma grande baía tropical, Costa Leste do Brasil. Universidade Federal da Bahia, MSc Thesis, 45pGoogle Scholar
  34. Miall AD (1978) Lithofacies types and vertical profile models in braided river deposits: a summary. In: Miall AD (ed) Fluvial Sedimentology, Canadian Society of Petroleum Geology, memoir, vol 5, pp 597–604Google Scholar
  35. Mohriak WU, Lira Rabelo J, Matos RD et al (1995) Deep seismic reflection profiling of sedimentary basins offshore Brazil: geological objectives and preliminary results in the Sergipe Basin. J Geodyn 20(4):515–539.  https://doi.org/10.1016/0264-3707(95)00024-4 CrossRefGoogle Scholar
  36. Nascimento SAM, Barbosa JSF (2005) Qualidade da água do aquífero freático no alto cristalino de Salvador, Bacia do Rio Lucaia. Revista Brasileira de Geociências 35(4):543–550CrossRefGoogle Scholar
  37. Pereira PMS (2017) A sedimentação no baixo da Boca do Rio, Salvador, Bahia. MSc Thesis. Universidade Federal da Bahia, 101pGoogle Scholar
  38. Santos IO (2018) Mapeamento Estratigráfico utilizando sísmica rasa de alta resolução no trecho da futur aponte Salvador-Itaparica na baía de Todos os Santos (Bahia – Brasil). MSc Thesis. Universidade Federal da Bahia, 52pGoogle Scholar
  39. Schlische RW (1995) Geometry and origin of fault-related folds in extensional settings. Am Assoc Pet Geol Bull 79:1661–1678Google Scholar
  40. Souza-Oliveira JS, Peucat JJ, Barbosa JSF et al (2014) Lithogeochemistry and geochronology of the subalkaline felsic plutonism that marks the end of the Paleoproterozoic orogeny in the Salvador–Esplanada belt, São Francisco craton (Salvador, state of Bahia, Brazil). Braz J Geol 44(2):221–234CrossRefGoogle Scholar
  41. Tortora P, Bellotti P, Valeri P (2001) Late-Pleistocene and Holocene deposition along the coasts and continental shelves of the Italian peninsula. In: Vai GB, Martini IP (eds) Anatomy of an Orogen: the Apennines and Adjacent Mediterranean Basins. Kluwer Academic, London, pp 455–478CrossRefGoogle Scholar
  42. Vail PR (1987) Seismic stratigraphy interpretation procedure. In: Bally, A. W. (Ed.), Atlas of seismic stratigraphy, vol. 27. American Association of Petroleum Geologists Studies in Geology, p. 1–10.Google Scholar
  43. Vail PR, Mitchum RM Jr, Thompson S III (1977) Seismic stratigraphy and global changes of sea level, part four: global cycles of relative changes of sea level. AAPG Mem 26:83–98Google Scholar
  44. Vital H (2014) The north and northeast Brazilian tropical shelves. In: Chiocci FL, Chivas AR (eds). Continental shelves of the world: their evolution during the last Glacio-Eustatic cycle. Geol Soc Lond Mem 41:35–46.  https://doi.org/10.1144/M41.12 CrossRefGoogle Scholar
  45. Vital H, Stattegger K, Amaro VE, Schwarzer K, Frazão EP, Tabosa WF (2008) A modern high-energy siliciclastic– carbonate platform: continental shelf adjacent to northern Rio Grande do Norte state, NE Brazil. In: Hampson, G. & Dalrymple, R. (eds) Recent advances in odels of Siliciclastic Shallow-Marine Stratigraphy. SEPM Special Publications, Tulsa 90:177–190Google Scholar
  46. Wanderley Filho JR, Graddi JCSV (1993) Projeto Jacuípe: relatório Interno Rio de Janeiro: Petrobrás. DEXBA; DIREX; SEMAR:57pGoogle Scholar
  47. Withjack MO, Schlische RW, Olsen PE (2002) Rift-basin structure and its influence on sedimentary systems. Sedimentation in Continental Rifts 73:57–81.  https://doi.org/10.1016/j.earscirev.2012.09.003 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.UFBA-Federal University of BahiaSalvadorBrazil

Personalised recommendations