Controls on greigite preservation in a gas hydrate system of the Krishna-Godavari basin, Bay of Bengal

  • Firoz BadesabEmail author
  • Virsen Gaikwad
  • Pawan Dewangan


Shallow sediments across large parts of Krishna-Godavari (K-G) basin offshore east central Indian contain abundant methane and gas hydrates. In this study, we carried out rock-magnetic and transmission electron microscope (TEM) analyses on the samples from a sediment core (MD161/Stn-8) to constrain the formation and preservation of greigite in shallow sediments and how this might link to reactions involving methane. Here, we report for the first time the occurrence of silicate-hosted iron sulfide (greigite) inclusions which is an important observation for understanding the preservation of magnetic minerals in gas hydrate systems. The magnetization of the greigite zone (17–23 mbsf) is carried by complex magnetic mineral assemblages of detrital iron oxides (titanomagnetite), diagenetic iron sulfide (greigite) occurring as nano-inclusions within larger silicate particles, and biogenic minerals. Elevated concentrations of dissolved pore water silica and alkalinity within the magnetically enhanced greigite zone suggest that silica diagenesis and silicate weathering triggered by paleo-methane seepage played a key role in crystallizing the diagenetically formed iron sulfide (greigite) into silicate matrix. The silicate-hosted magnetic inclusions protected the ferrimagnetic greigite from further diagenetic dissolution and prevented its conversion into stable pyrite. Three scenarios explaining the potential controls on the greigite preservation in gas hydrate marine sedimentary system have been proposed.



We thank the Directors of CSIR-NIO, NCAOR, NIOT, advisor MOES, and NGHP (India) for supporting this study. We thank the head of oceanography department, and in-charge, onboard operations of IPEV are thanked for providing technical support and facilities onboard. We thank the students of Goa University, IIT Kharagpur, and the project scientists of NIO, NIOT, PRL, and NGRI. We thank Dr. Mike Jackson, Institute for Rock Magnetism (IRM), and the University of Minnesota, USA, for carrying out FORC measurements. We also thank the Director, Indian Institute of Geomagnetism (IIG), New Panvel, for providing permission to carry out magnetic measurements. We thank Professor B. R. Jagirdar, Indian Institute of Science, Bangalore, India, for providing support with TEM-EDS analysis. We thank T. Ramprasad and Dr. Brenda Mascarenhas for suggestions and timely inputs in this work.

Funding information

This study was funded by SERB-DST, Government of India, under the scheme “Early Career Research Award (DST no: ECR/2016/000528) to Dr. Firoz Badesab. We sincerely acknowledge the comments from the editor (Dr. Andrew Green), associate editor (Dr. Gerald Dickens) and two reviewers (Dr. Liao Chang and anonymous).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

367_2019_604_MOESM1_ESM.jpg (3.2 mb)
ESM 1 (JPG 3310 kb)
367_2019_604_MOESM2_ESM.jpg (2 mb)
ESM 2 (JPG 2034 kb)


  1. Aloisi G, Wallmann K, Drews M, Bohrmann G (2004) Evidence for the submarine weathering of silicate minerals in Black Sea sediments: possible implications for the marine Li and B cycles. Geochem Geophys Geosyst 5(4). CrossRefGoogle Scholar
  2. Badesab F, Dewangan P, Usapkar A, Kocherla M, Peketi A, Mohite K, Sangode SJ, Deenadayalan K (2017) Controls on evolution of gas-hydrate system in the Krishna-Godavari basin, offshore India. Geochem Geophys Geosyst 18(1):52–74. CrossRefGoogle Scholar
  3. Badesab F, Dewangan P, Gaikwad V, Kars M, Kocherla M, Krishna KS, Sangode SJ, Deenadayalan K, Kumar P, Naikgaonkar O, Ismaiel M, Khan A (2019) Magnetic mineralogical approach for exploration of gas hydrates in the Bay of Bengal. 1. J Geophys Res Solid Earth 24(5):4428–4451. CrossRefGoogle Scholar
  4. Bazylinski DA, Frankel RB, Heywood BR, Mann S, King JW, Donaghay PL, Hanson AK (1995) Controlled biomineralization of magnetite (Fe (inf3) O (inf4)) and greigite (Fe (inf3) S (inf4)) in a magnetotactic bacterium. Appl Environ Microbiol 61(9):3232–3239Google Scholar
  5. Berner RA (1984) Sedimentary pyrite formation: an update. Geochim Cosmochim Acta 48(4):605–615. CrossRefGoogle Scholar
  6. Biksham G, Subramanian V (1988) Sediment transport of the Godavari River basin and its controlling factors. J Hydrol 101(1-4):275–290. CrossRefGoogle Scholar
  7. Chang L, Roberts AP, Muxworthy AR, Tang Y, Chen Q, Rowan CJ, Liu Q, Pruner P (2007) Magnetic characteristics of synthetic pseudo-single-domain and multi-domain greigite (Fe3S4). Geophys Res Lett 34(24).
  8. Chang L, Winklhofer M, Roberts AP, Dekkers MJ, Horng CS, Hu L, Chen Q (2012) Ferromagnetic resonance characterization of greigite (Fe3S4), monoclinic pyrrhotite (Fe7S8), and non-interacting titanomagnetite (Fe3-xTixO4). Geochem Geophys Geosyst 13(5).
  9. Chang L, Roberts AP, Winklhofer M, Heslop D, Dekkers MJ, Krijgsman W, Fitz Gerald JD, Smith P (2014a) Magnetic detection and characterization of biogenic magnetic minerals: a comparison of ferromagnetic resonance and first-order reversal curve diagrams. J Geophys Res Solid Earth 119(8):6136–6158. CrossRefGoogle Scholar
  10. Chang L, Vasiliev I, van Baak C, Krijgsman W, Dekkers MJ, Roberts AP, Gerald JDF, van Hoesel A, Winklhofer M (2014b) Identification and environmental interpretation of diagenetic and biogenic greigite in sediments: a lesson from the Messinian Black Sea. Geochem Geophys Geosyst 15(9):3612–3627. CrossRefGoogle Scholar
  11. Chang L, Bolton CT, Dekkers MJ, Hayashida A, Heslop D, Krijgsman W, Kodama K, Paterson GA, Roberts AP, Rohling EJ, Yamamoto Y (2016) Asian monsoon modulation of nonsteady state diagenesis in hemipelagic marine sediments offshore of Japan. Geochem Geophys Geosyst 17(11):4383–4398. CrossRefGoogle Scholar
  12. Chang L, Roberts AP, Heslop D, Hayashida A, Li J, Zhao X, Tian W, Huang Q (2016a) Widespread occurrence of silicate-hosted magnetic mineral inclusions in marine sediments and their contribution to paleomagnetic recording. J Geophys Res Solid Earth 121(12):8415–8431. CrossRefGoogle Scholar
  13. Chang L, Heslop D, Roberts AP, Rey D, Mohamed KJ (2016b) Discrimination of biogenic and detrital magnetite through a double Verwey transition temperature. J Geophys Res Solid Earth 121(1):3–14. CrossRefGoogle Scholar
  14. Collett T, Riedel M, Cochran JR, Boswell R, Presley J, Kumar P, Sathe A, Lall M, Sibal V, the NGHP Expedition 01 Scientists (2008) Indian national gas hydrate program, expedition - 01, initial report, Directorate General of Hydrocarbons. Ministry of Petroleum and Natural gas, IndiaGoogle Scholar
  15. Cook MS, Keigwin LD, Birgel D, Hinrichs K-U (2011) Repeated pulses of vertical methane flux recorded in glacial sediments from the southeast Bering Sea. Paleoceanography 26:PA2210. CrossRefGoogle Scholar
  16. Dewangan P, Sriram G, Ramprasad T, Ramana MV, Jaiswal P (2011) Fault system and thermal regime in the vicinity of site NGHP-01-10, Krishna–Godavari basin, Bay of Bengal. Mar Pet Geol 28:1899–1914. CrossRefGoogle Scholar
  17. Dewangan P, Basavaiah N, Badesab FK, Usapkar A, Mazumdar A, Joshi R, Ramprasad T (2013) Diagenesis of magnetic minerals in a gas hydrate/cold seep environment off the Krishna–Godavari basin, Bay of Bengal. Mar Geol 340:57–70. CrossRefGoogle Scholar
  18. Ebert Y, Shaar R, Emmanuel S, Nowaczyk N, Stein M (2018) Overwriting of sedimentary magnetism by bacterially mediated mineral alteration. Geology 46(4):291–294. CrossRefGoogle Scholar
  19. Egli R, Chen AP, Winklhofer M, Kodama KP, Horng CS (2010) Detection of noninteracting single domain particles using first-order reversal curve diagrams. Geochem Geophys Geosyst 11(1). CrossRefGoogle Scholar
  20. Evans ME, Wayman ML (1970) An investigation of small magnetic particles by means of electron microscopy. Earth Planet Sci Lett 9(4):365–370. CrossRefGoogle Scholar
  21. Froelich P, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, Dauphin P, Hammond D, Hartman B, Maynard V (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta 43(7):1075–1090. CrossRefGoogle Scholar
  22. Harrison RJ, Feinberg JM (2008) FORCinel: an improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing. Geochem Geophys Geosyst 9:Q05016. CrossRefGoogle Scholar
  23. Horng CS, Chen KH (2006) Complicated magnetic mineral assemblages in marine sediments offshore southwestern Taiwan: possible influences of methane flux on the early diagenetic process. Terr Atmos Ocean Sci 17:1009–1026. CrossRefGoogle Scholar
  24. Hounslow MW, Morton AC (2004) Evaluation of sediment provenance using magnetic mineral inclusions in clastic silicates: comparison with heavy mineral analysis. Sediment Geol 171(1-4):13–36. CrossRefGoogle Scholar
  25. Housen BA, Musgrave RJ (1996) Rock-magnetic signature of gas hydrates in accretionary prism sediments. Earth Planet Sci Lett 139(3-4):509–519. CrossRefGoogle Scholar
  26. Jørgensen BB, Böttcher ME, Lüschen H, Neretin LN, Volkov II (2004) Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments. Geochim Cosmochim Acta 68(9):2095–2118. CrossRefGoogle Scholar
  27. Joshi RK, Mazumdar A, Peketi A, Ramamurty PB, Naik BG, Kocherla M, Carvalho MA, Mahalakshmi P, Dewangan P, Ramana MV (2014) Gas hydrate destabilization and methane release events in the Krishna–Godavari Basin, Bay of Bengal. Mar Pet Geol 58:476–489. CrossRefGoogle Scholar
  28. Kao SJ, Horng CS, Roberts AP, Liu KK (2004) Carbon–sulfur–iron relationships in sedimentary rocks from southwestern Taiwan: influence of geochemical environment on greigite and pyrrhotite formation. Chem Geol 203(1-2):153–168. CrossRefGoogle Scholar
  29. Kars MM, Kodma K (2015) Authigenesis of magnetic minerals in gas hydrate bearing sediments in the Nankai Trough, Offshore Japan. Geochem Geophys Geosyst 16:947–961. CrossRefGoogle Scholar
  30. Kasten S, Freudenthal T, Gingele FX, Schulz HD (1998) Simultaneous formation of iron-rich layers at different redox boundaries in sediments of the Amazon deep-sea fan. Geochim Cosmochim Acta 62:2253–2264. CrossRefGoogle Scholar
  31. Kiel S, Birgel D, Campbell KA, Crampton JS, Schiøler P, Peckmann J (2013) Cretaceous methane-seep deposits from New Zealand and their fauna. Palaeogeogr Palaeoclimatol Palaeoecol 390:17–34. CrossRefGoogle Scholar
  32. Kim JH, Torres ME, Haley BA, Ryu JS, Park MH, Hong WL, Choi J (2016) Marine silicate weathering in the anoxic sediment of the Ulleung Basin: evidence and consequences. Geochem Geophys Geosyst 17(8):3437–3453. CrossRefGoogle Scholar
  33. Kuechler RR, Birgel D, Kiel S, Freiwald A, Goedert JL, Thiel V, Peckmann J (2012) Miocene methane-derived carbonates from southwestern Washington, USA and a model for silicification at seeps. Lethaia 45:259–273. CrossRefGoogle Scholar
  34. Kumar P, Collett TS, Boswell R, Cochran JR, Lall M, Mazumdar A, Ramana MV, Ramprasad T, Riedel M, Sain K, Sathe AV (2014) Geologic implications of gas hydrates in the offshore of India: Krishna-Godavari Basin, Mahanadi Basin, Andaman Sea, Kerala–Konkan Basin. Mar Pet Geol 58:29–98. CrossRefGoogle Scholar
  35. Larrasoaña JC, Murelaga X, Garcés M (2006) Magnetobiochronology of Lower Miocene (Ramblian) continental sediments from the Tudela formation (western Ebro basin, Spain). Earth Planet Sci Lett 243(3-4):409–423. CrossRefGoogle Scholar
  36. Larrasoaña JC, Roberts AP, Musgrave RJ, Gràcia E, Piñero E, Vega M, Martínez-Ruiz F (2007) Diagenetic formation of greigite and pyrrhotite in gas hydrate marine sedimentary systems. Earth Planet Sci Lett 261(3-4):350–366. CrossRefGoogle Scholar
  37. Larrasoana JC, Roberts AP, Chang L, Schellenberg SA, Gerald JDF, Norris RD, Zachos JC (2012) Magnetotactic bacterial response to Antarctic dust supply during the Palaeocene–Eocene thermal maximum. Earth Planet Sci Lett 333:122–133. CrossRefGoogle Scholar
  38. Lascu I, Einsle JF, Ball MR, Harrison RJ (2018) The vortex state in geologicmaterials: a micromagnetic perspective. J Geophys Res Solid Earth 123:7285–7304. CrossRefGoogle Scholar
  39. Lee MW, Collett TS (2009) Gas hydrate saturations estimated from fractured reservoir at Site NGHP-01-10, Krishna-Godavari Basin, India. J Geophys Res Solid Earth 114(B7).
  40. Maher BA (1988) Magnetic properties of some synthetic sub-micron magnetites. Geophys J Int 94(1):83–96. CrossRefGoogle Scholar
  41. Mazumdar A, Dewangan P, Joäo HM, Peketi A, Khosla VR, Kocherla M, Badesab FK, Joshi RK, Roxanne P, Ramamurty PB, Karisiddaiah SM (2009) Evidence of paleo–cold seep activity from the Bay of Bengal, offshore India. Geochem Geophys Geosyst 10(6). CrossRefGoogle Scholar
  42. Mazumdar A, Joshi RK, Peketi A, Kocherla M (2011) Occurrence of faecal pellet-filled simple and composite burrows in cold seep carbonates: a glimpse of a complex benthic ecosystem. Mar Geol 289:117–121. CrossRefGoogle Scholar
  43. Mazumdar A, Dewangan P, Peketi A, Sriram G, Kalpana MS, Naik GP, Shetty D, Pujari S, Pillutla SP, Gaikwad VV, Nazareth D, Sangodkar NS, Dakara G, Kumar A, Mishra CK, Singha P, Reddy R (2019) The first record of active methane (cold) seep ecosystem from the Indian EEZ. J Earth Syst Sci 128:18. CrossRefGoogle Scholar
  44. Morgan GE, Smith PPK (1981) Transmission electron microscope and rock magnetic investigations of remanence carriers in a Precambrian metadolerite. Earth Planet Sci Lett 53(2):226–240. CrossRefGoogle Scholar
  45. Musgrave RJ, Bangs NL, Larrasoaña JC, Gràcia E, Hollamby JA, Vega ME (2006) Rise of the base of the gas hydrate zone since the last glacial recorded by rock magnetism. Geology 34(2):117–120. CrossRefGoogle Scholar
  46. Muxworthy AR, Dunlop DJ (2002) First-order reversal curve (FORC) diagrams for pseudo-single-domain magnetites at high temperature. Earth Planet Sci Lett 203(1):369–382. CrossRefGoogle Scholar
  47. Muxworthy AR, Williams W, Roberts AP, Winklhofer M, Chang L, Posfai M (2013) Critical single domain grain sizes in chains of interacting greigite particles: implications for magnetosome crystals. Geochem Geophys Geosyst 14(12):5430–5441. CrossRefGoogle Scholar
  48. Oldfield F (2007) Sources of fine-grained magnetic minerals in sediments: a problem revisited. The Holocene 17(8):1265–1271. CrossRefGoogle Scholar
  49. Peketi A, Mazumdar A, Joshi RK, Patil DJ, Srinivas PL, Dayal AM (2012) Tracing the paleo sulfate–methane transition zones and H2S seepage events in marine sediments: an application of C-S-Mo systematic. Geochem Geophys Geosyst 13:Q10007. CrossRefGoogle Scholar
  50. Petersen N, Von Dobeneck T, Vali H (1986) Fossil bacterial magnetite in deep-sea sediments from the South Atlantic Ocean. Nature 320:611–615. CrossRefGoogle Scholar
  51. Pike CR, Roberts AP, Verosub KL (1999) Characterizing interactions in fine magnetic particle systems using first order reversal curves. J Appl Phys 85(9):6660–6667. CrossRefGoogle Scholar
  52. Prabhakar KN, Zutshi PL (1993) Evolution of southern part of Indian East Coast basin. J Geol Soc India 41:215–230Google Scholar
  53. Ramesh R, Subramanian V (1988) Temporal, spatial and size variation in the sediment transport in the Krishna River basin, India. J Hydrol 98:53–65. CrossRefGoogle Scholar
  54. Rao GN (2001) Sedimentation, stratigraphy, and petroleum potential of Krishna-Godavari basin, East Coast of India. Am Assoc Pet Geol Bull 85(9):1623–1643Google Scholar
  55. Reinholdsson M, Snowball I, Zillén L, Lenz C, Conley DJ (2013) Magnetic enhancement of Baltic Sea sapropels by greigite magnetofossils. Earth Planet Sci Lett 366:137–150. CrossRefGoogle Scholar
  56. Roberts AP, Turner GM (1993) Diagenetic formation of ferrimagnetic iron sulphide minerals in rapidly deposited marine sediments, South Island, New Zealand. Earth Planet Sci Lett 115(1-4):257–273. CrossRefGoogle Scholar
  57. Roberts AP, Stoner JS, Richter C (1999) Diagenetic magnetic enhancement of sapropels from the eastern Mediterranean Sea. Mar Geol 153(1-4):103–116. CrossRefGoogle Scholar
  58. Roberts AP, Pike CR, Verosub KL (2000) First-order reversal curve diagrams: a new tool for characterizing the magnetic properties of natural samples. J Geophys Res Solid Earth 105(B12):28461–28475. CrossRefGoogle Scholar
  59. Roberts AP, Liu Q, Rowan CJ, Chang L, Carvallo C, Torrent J, Horng CS (2006) Characterization of hematite (α-Fe2O3), goethite (α-FeOOH), greigite (Fe3S4), and pyrrhotite (Fe7S8) using first-order reversal curve diagrams. J Geophys Res Solid Earth 111(B12). CrossRefGoogle Scholar
  60. Roberts AP, Chang L, Rowan CJ, Horng CS, Florindo F (2011a) Magnetic properties of sedimentary greigite (Fe3S4): an update. Rev Geophys 49(1).
  61. Roberts AP, Chang L, Rowan CJ, Horng CS, Florindo F (2011b) Magnetic properties of sedimentary greigite (Fe3S4): an update. Rev Geophys 49:RG1002. CrossRefGoogle Scholar
  62. Roberts AP, Almeida TP, Church NS, Harrison RJ, Heslop D, Li Y, Li J, Muxworthy AR, Williams W, Zhao X (2017) Resolving the origin of pseudo-single domain magnetic behavior. J Geophys Res Solid Earth 122(12):9534–9558. CrossRefGoogle Scholar
  63. Rowan CJ, Roberts AP (2006) Magnetite dissolution, diachronous greigite formation, and secondary magnetizations from pyrite oxidation: unravelling complex magnetizations in Neogene marine sediments from New Zealand. Earth Planet Sci Lett 241(1-2):119–137. CrossRefGoogle Scholar
  64. Scholz F, Hensen C, Schmidt M, Geersen J (2013) Submarine weathering of silicate minerals and the extent of pore water freshening at active continental margins. Geochim Cosmochim Acta 100:200–216. CrossRefGoogle Scholar
  65. Smrzka D, Kraemer SM, Zwicker J, Birgel D, Fischer D, Kasten S, Goedert JL, Peckmann J (2015) Constraining silica diagenesis in methane-seep deposits. Palaeogeogr Palaeoclimatol Palaeoecol 420:13–26CrossRefGoogle Scholar
  66. Snowball IF (1994) Bacterial magnetite and the magnetic properties of sediments in a Swedish lake. Earth Planet Sci Lett 126(1-3):129–142. CrossRefGoogle Scholar
  67. Snowball IF (1997) Gyroremanent magnetization and the magnetic properties of greigite-bearing clays in southern Sweden. Geophys J Int 129(3):624–636. CrossRefGoogle Scholar
  68. Snowball I, Sandgren P, Petterson G (1999) The mineral magnetic properties of an annually laminated Holocene lake-sediment sequence in northern Sweden. The Holocene 9(3):353–362. CrossRefGoogle Scholar
  69. Snowball I, Zillén L, Sandgren P (2002) Bacterial magnetite in Swedish varved lake-sediments: a potential bio-marker of environmental change. Quat Int 88(1):13–19. CrossRefGoogle Scholar
  70. Solomon EA, Spivack AJ, Kastner M, Torres ME, Robertson G (2014) Gas hydrate distribution and carbon sequestration through coupled microbial methanogenesis and silicate weathering in the Krishna–Godavari Basin, offshore India. Mar Pet Geol 58:233–253. CrossRefGoogle Scholar
  71. Sriram G, Dewangan P, Ramprasad T, Rama Rao P (2013) Anisotropic amplitude variation of the bottom-simulating reflector beneath fracture-filled gas hydrate deposit. J Geophys Res Solid Earth 118(5):2258–2274. CrossRefGoogle Scholar
  72. Vasiliev I, Dekkers MJ, Krijgsman W, Franke C, Langereis CG, Mullender TA (2007) Early diagenetic greigite as a recorder of the palaeomagnetic signal in Miocene—Pliocene sedimentary rocks of the Carpathian foredeep (Romania). Geophys J Int 171(2):613–629. CrossRefGoogle Scholar
  73. Vasiliev I, Franke C, Meeldijk JD, Dekkers MJ, Langereis CG, Krijgsman W (2008) Putative greigite magnetofossils from the Pliocene epoch. Nat Geosci 1(11):782. CrossRefGoogle Scholar
  74. Wallmann K, Aloisi G, Haeckel M, Tishchenko P, Pavlova G, Greinert J, Kutterolf S, Eisenhauer A (2008) Silicate weathering in anoxic marine sediments. Geochim Cosmochim Acta 72(12):2895–2918. CrossRefGoogle Scholar
  75. Wallmann K, Riedel M, Hong WL, Patton H, Hubbard A, Pape T, Hsu CW, Schmidt C, Johnson JE, Torres ME, Andreassen K (2018) Gas hydrate dissociation off Svalbard induced by isostatic rebound rather than global warming. Nat Commun 9(1):83. CrossRefGoogle Scholar
  76. Yamazaki T (2012) Paleoposition of the Intertropical Convergence Zone in the eastern Pacific inferred from glacial-interglacial changes in terrigenous and biogenic magnetic mineral fractions. Geology 40(2):151–154. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CSIR - National Institute of OceanographyDona PaulaIndia

Personalised recommendations